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ABSTRACT
Vulnerability databases are one of the main information sources
for IT security experts. Hence, the quality of their information is of
utmost importance for anyone working in this area. Previous work
has shown that machine readable information is either missing,
incorrect, or inconsistent with other data sources. In this paper,
we introduce a system called Overt Vulnerability source ANAly-
sis (OVANA), which analyzes the information quality of vulnera-
bility databases utilizing state-of-the-art machine learning (ML)
and natural language processing (NLP) techniques, searches the
free-form description for relevant information missing from struc-
tured fields, and updates it accordingly. Our paper exemplifies that
on the National Vulnerability Database, showing that OVANA is
able to improve the information quality by 51.23% based on the
indicators of accuracy, completeness, and uniqueness. Moreover,
we present information which should be incorporated into the
structured fields to increase the uniqueness of vulnerability entries
and improve the discriminability of different vulnerability entries.
The identified information from OVANA enables a more targeted
vulnerability search and provides guidance for IT security experts
in finding relevant information in vulnerability descriptions for
severity assessment.

CCS CONCEPTS
• Security and privacy→ Vulnerability management; • Com-
puting methodologies→ Supervised learning.
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1 INTRODUCTION
Vulnerabilities in IT systems pose a threat to cyberspace. If ignored
or overseen, they can lead to disastrous infrastructure failures of
states, organizations, and individuals [28], exemplified by the Not-
Petya outbreak in 2017 [27]. This attack was successful even though
the vulnerability was patched three months earlier [27]. Hence, it is
imperative to find and report vulnerabilities in existing systems, and
make information about them accessible to IT service providers and
IT administrators as quickly and detailed as possible [21]. Various
vulnerability data sources are available online to support IT security
experts in their daily workflow, and thus, secure IT infrastructures
and systems.

Leading vulnerability databases are the Common Vulnerabilties
and Exposures (CVE)1 and National Vulnerability Database (NVD)2,
which have accumulated more than 150k and 160k entries, respec-
tively, as of 2021-06-01. The CVE data feed collects not yet publicly
known vulnerability information submitted by researchers, organi-
zations, or individuals, while the NVD migrates it into its own data
feed. This information is polished, structured, and enhanced with
additional features, e.g., the Common Platform Enumeration (CPE)
specifier and a severity score using the Common Vulnerability Scor-
ing System (CVSS)3. The CVSS severity score is calculated based on
the CVSS vector, which is a key-value representation of different
parameters and their values, e.g., the parameter attack vector and
the corresponding values network, adjacent, local, or physical.

However, research has shown that information in both databases
is sometimes out-of-sync [9] or offers not enough evidence to al-
low timely reproduction and patching of the described vulnera-
bility [24], what can be interpreted as a sign of poor information
quality (IQ). Similar problems have been shown in other areas of IT
security, e.g., bug reports [6, 13]. These aspects slow down other-
wise urgent action between initial discovery and patch, and create
gaps of days, if not weeks or months [23, 31]. The seriousness of
this problematic situation increases when one considers the mass
of information security experts who face it. Different sources, e.g.,
1https://cve.mitre.org/
2https://nvd.nist.gov
3https://www.first.org/cvss/specification-document
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vulnerability databases, bug reports, or blog posts, may state differ-
ent (and possibly even contradictory) facts about a vulnerability,
as their knowledge is also based on different sources. To enable
security experts to cope with piles of information, it is mandatory
to analyze the quality of information available in high-reputation
information sources and ideally structure it in a way that machines
are able to provide support.

In this paper we analyze the IQ of structured information in
the NVD. The NVD is a trusted and tested source of information
among IT security experts. Its information is double-checked and
research has shown that the CVSS field in the NVD is more cred-
ible compared to other databases [18]. However, with more than
30 vulnerabilities disclosed every day, the amount of information
seems overwhelming. Therefore, automation to guide and support
experts is a promising avenue for research. However, these tools
require structured information, i.e., information that allows easy
automation of processes. Usually, IQ is considered a subjective met-
ric, depending on the person reviewing it. However, Naumann and
Rolker [25] have categorized indicators to measure IQ, some of
which can be measured objectively. In this paper we seek to answer
two research questions: First, what are quantifiable criteria for the
assessment of IQ in vulnerability databases? Second, which distinct
information improves the IQ of the NVD?

For this purpose, we leverage the structured information in the
database entries and the free-form entries. Our metric for IQ in-
corporates the indicators accuracy, completeness, and uniqueness.
Therefore, we compare the vulnerability information of all entries
to obtain an overall picture rather than focusing on the details of
individual entries. To achieve our goal, several challenges need to
be solved: (i) a metric must be defined to measure the IQ within the
NVD, (ii) relevant information must be extracted from free-form
vulnerability descriptions, and (iii) incorrect information must be
rectified and missing information must be added (e.g., the CVSS
version 3).

These challenges are tackled with our tool OVANA, which lever-
ages the state-of-the-art in NLP, BERT embeddings [8] and the
flair-framework [2] to identify relevant information in free-form
vulnerability descriptions and automate the process of IQ analysis.
To encourage future work on this project, we provide the source
code of OVANA4.

This paper showcases our contributions with OVANA. On the
theoretical side, we provide a metric for measuring the IQ within
vulnerability databases (T1). Second, we propose a novel, partially
explainable, two-step machine learning pipeline capable of pre-
dicting security relevant tags and a CVSS score of NVD entries
that can facilitate better vulnerability assessment (T2). As practical
contribution, the proposed tool identifies information in the NVD
entries that can be used to speed up the search, reproducibility, and
patching of the vulnerabilities (P1). Further, the proposed pipeline
may be used in the early stages of vulnerability disclosure to assist
security professionals in finding an appropriate CVSS value and
providing users with vulnerability guidance (P2). Lastly, our tool
elucidates the actual assignment of CVSS scores by making the
prediction explainable (P3).

4Published here: https://github.com/PEASEC/OVANA

The rest of this paper is structured as follows: §2 shows related
work and outlines the research gap, §3 introduces a preliminary
analysis followed by the concept of OVANA. §4 shows the evalua-
tion of the ML models used, additional tweaks of the system, and
presents the results of the IQ analysis. §5 discusses contributions
and limitations, with a corresponding presentation of future work,
while §6 concludes this paper.

2 RELATEDWORK
This section presents related work, categorized into report and
CVSS analysis, followed by the research gap.

2.1 Report Analysis
Public vulnerability reports have been examined in a variety of con-
texts. Nguyen and Massacci [26] are the first researchers to conduct
a large scale inconsistency analysis. They identified incorrect ver-
sion numbers in the NVD entries concerning the Google Chrome
browser. Based on their results, Dong et al. [9] analyzed inconsis-
tencies in software versions between vulnerability reports in the
NVD and CVE. They showed that inconsistencies between NVD en-
tries and corresponding CVE entries are highly prevalent and result
in missing information in the NVD. Chaparro et al. [6] analyzed
vulnerability reports and found missing steps-to-reproduce and
expected behavior of the software. Similar work has been done by
Mu et al. [24]. They analyzed the reproducibility of crowd-sourced
vulnerability reports and chose a manual approach, by checking,
whether vulnerabilities in 368 selected reports were reproducible
with the information provided. Only 54.9% of the analyzed reports
offered enough information to be reproducible, showing a similar
result, i.e., a lack of quality in public vulnerability descriptions.
Considering the tremendous amount of work that has to be spent
on manual quality analysis, the authors stress the need for an auto-
matic collection of the missing information.

Different possible use cases for vulnerability reports have been
analyzed. You et al. [35] studied vulnerability descriptions and auto-
matically generated Proof-of-Concept exploits for the Linux kernel
using semantic information in CVE descriptions. Their results show
that vulnerable functions, variables, and system calls are critical
semantic information for automated exploit generation. Schaber-
reiter et al. [30] presented a methodology for assessing trust in
Cyber Threat Intelligence (CTI) sources based on a closed world
assumption. They leveraged different IQ indicators, such as timeli-
ness, to compare different CTI sources. Farhang et al. [14] analyzed
Android vulnerabilities and their corresponding security bulletin
entries from different vendors and discovered structural differences
in the reporting on different vendor platforms. Zhang et al. [36]
used information provided by the NVD to predict incoming cyber
risks by using information about the affected product and the fre-
quency of occurrence of new vulnerabilities for that product. Fan
et al. [13] developed a tool to identify valid bug reports using 33
extracted features from bug reports that can be used in various
occasions, e.g., bug bounty programs.

Several papers proposed ways to improve the IQ of vulnerability
reports. Guo et al. [15] identified missing information about the
vulnerability type and trigger of a vulnerability in NVD entries
and completed them using deep learning. Anwar et al. [4] analyzed
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inconsistencies in the structured fields publication date, vendor,
product names, severity score, and vulnerability type in the NVD
entries. They rectified these information by crawling the references
of the specific entries and used different ML techniques, followed
by an analysis of the rectified data.

2.2 Vulnerability Severity Assessment
The CVSS was introduced in 2003 with the release of version 1 in
2005 and has since been improved, resulting in the current version
3.1, released in 2019. Over the years, it has been criticized for its
lack of transparency [12, 33]. Besides these critiques, the CVSS
has been analyzed in different dimensions, ranging from compar-
ing the severity perception of IT security experts with the CVSS
scores [16], to correlating the CVSS scores with the number of
real-world exploitations [3]. Research by Ruohonen [29] showed an
average delay of the CVSS severity assessment in the NVD of one
week in recent years. Different proposals bridge this gap with ML
methods. Elbaz et al. [10] train a ML model based on the free-form
NVD descriptions to predict the CVSS vector. Anwar et al. [4], on
the other hand, use ML with the structured information of NVD
entries to update CVSSv2 scores into v3 scores.

2.3 Research Gap
Vulnerability information sources are mandatory to patch loopholes
and consequently secure IT infrastructures. This requires good IQ
as timely as possible. Recent work in the field of vulnerability re-
port analysis shows poor report quality [24] and inconsistencies
in vulnerability databases [9, 26], which leads to confusion and a
delayed patching process. All the works shown either focus on a
single IQ indicator or information detail [9, 10, 15], or use solely the
structured information to correct information [4]. This urges an au-
tomated and universal approach to improve the IQ of official sources
such as the NVD, which uses various IQ indicators, corrects erro-
neous information and predicts empty fields based on all available
information, including free-form description. Work that provides
such an IQ metric which can be used to compare IQ improvement
approaches [4, 9, 10, 15], as well as research that analyzes different
indicators of the vulnerability database IQ, is currently still missing.
As Elbaz et al. [10] have already indicated, this research needs to
be explainable so one understands the decision-making processes
of the algorithms.

3 CONCEPT
This section shows a preliminary analysis of the NVD to motivate
our research. This analysis evolved into the OVANA architecture,
followed by an explanation of howwe solve the different challenges.

3.1 Dataset
In the present work, we focus solely on the NVD. Hence, we use
all 146,100 NVD vulnerability entries from 1999 until 2020, times-
tamped on 2020-05-03, which are available at the NVD as JSON
feed5. From this dataset, we extract 3,000 vulnerability entries dis-
tributed over the years 2013 until 2019, which contain a CVSSv3
vector. Their descriptions are manually labeled with the tags in

5https://nvd.nist.gov/vuln/data-feeds

Table 1: Labels used in descriptions.

Label Tag Usage
software name SN Dong et al. [9]

software version SV Dong et al. [9]
attack vector AV CVSS

attack complexity AC CVSS
privileges required PR CVSS

user interaction UI CVSS
scope S CVSS

confidentiality impact CI CVSS
integrity impact II CVSS

availability Impact AI CVSS
weakness W CWE

vulnerable function VF New field
vulnerable path VP New field

other O

Tab. 1 (details follow) by two IT security experts. These labeled
vulnerability descriptions form the basis for training and testing
the Named-Entity Recognition (NER) tagger and CVSS score pre-
dictors (see §3.3). To reduce manual workload and error-proneness,
we only labeled the tags from Tab. 1 without annotating the CVSS
values, which can be obtained directly from the NVD database.
As an example, we have labeled the tag attack vector, but not the
associated CVSS values network, adjacent, local, and physical.

3.2 Preliminary Analysis
To look deeper into the direction of IQ, we performed a preliminary
analysis of the information in the NVD (timestamped 2020-05-03).
We examined whether the structured information alone is sufficient
to identify vulnerabilities. This is an important step in IT security
management, as it enables automated detection of vulnerable IT
system in an infrastructure. E.g., if the information in vulnerability
reports is too broad, one might find many vulnerabilities unrelated
to the specific system resulting in a shut down of specific compo-
nents, causing a business process disruption. For this reason, we
implemented a small cluster analysis. It clusters the entries in the
NVD dataset nvd in one year y based on their machine readable in-
formation: the fields CPE, CommonWeakness Enumeration (CWE),
and CVSSv3, which are extracted in reduce_entry. The clustering
algorithm is given in the following Python excerpt6.

c l u s t e r = d e f a u l t d i c t ( l i s t )
f o r v in nvd [ y ] :

c l u s t e r [ r e duc e_ en t r y ( v ) ] . append ( v )

This method showed large clusters in our dataset, e.g., CVE-2019-
2138 to CVE-2019-2165. We further examined our dataset to find
the origin of clusters and identified the following problems:

(1) Weakness information are missing (e.g., CVE-2019-5620) or
use dummy values (e.g., CVE-1999-0003 or CVE-2019-10732).

6References defaultdict https://docs.python.org/3/library/collections.html?highlight=
defaultdict#collections.defaultdict
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Figure 1: Average cluster sizes per year

Figure 2: Clusters by year excluding singletons: the first bar
of each year shows the clusters of the original data and the
second bar the clusters of the enriched data.

(2) The outdated CVSSv2 standard is used (e.g., CVE-2017-18538).
(3) Information in the free-form description is not fully utilized

in the structured information (e.g., in CVE-2019-9956 or CVE-
2019-1010101).

(4) Some entries miss CPE information (e.g., CVE-2017-0235)
and in general the CPE is rarely used at its full potential (e.g.,
CVE-2019-8010 misses the vulnerable version).

(5) Libraries are accounted as part of the product they are used
in, even if there are matching CPE classes and should be
standalone products (e.g., in CVE-2019-9232).

Over the course of this paper we focus on problem 2 and 3, while
we leave the rest for future work. Given these concrete problems,
we wrote a solver that uses regular expressions to identify path
information and CWE classes within descriptions of NVD entries.
We use the identified information to enrich the corresponding NVD
entries to reduce the previously mentioned problem of having too
broad information in NVD entries. This simple method reduced the
overall average cluster size from ≈ 1.22 to ≈ 1.16, i.e., by ≈ 0.061
(see Fig. 1). Fig. 2 depicts the improvements in cluster sizes of this
approach (excluding singletons). The first bar of each year shows

the clusters of the original data, while the second bar shows the
clusters of the enriched data. The gradient color is based on the
clusters size, i.e., clusters in the same size range share the same
color. One can see that our approach split clusters into smaller ones
(depicted by the decreased average cluster size), while some clusters
remain quite large. Based on these results, we looked further into
possible solutions with sophisticated methods to solve the problems.

3.3 OVANA Architecture
OVANA is composed of different modules: an IQ module, a NER
module with a tagger for each tag, and a CVSS value predictor
module with a predictor for each CVSS parameter, while the IQ
module is used to benchmark the IQ. The IQ module benchmarks
the IQ score of the input data based on the IQ indicators used, while
the NER and CVSS modules are used to increase the IQ value of the
this data. Specifically, the NER module is able to identify important
named entities in the description of NVD entries. The CVSS value
predictor module consists of multiple deep-learning models to pre-
dict the value of a specific CVSS key based on the identified named
entities. The output of the NER module and the CVSS value predic-
tor are then implemented into the vulnerability dataset by either
correcting inconsistencies (in case of the CVSS value) or adding
identified core information (in case of the vulnerable function (VF)
and vulnerable path (VP)). Fig. 3 depicts the pipeline as described.

3.3.1 Information Quality. Measuring the information quality (IQ)
of the NVD requires adequate indicators. Many IQ frameworks
are available in the literature [1, 11, 25]. They define different IQ
indicators for specific contexts, such as social media [1] or online
marketing [11], and categorize them into sub-categories, e.g., sub-
ject, object, and process criteria [25]. Since we analyze the IQ of
the NVD, we have a specific context with specific requirements.
We intend to objectively measure the IQ without using information
sources other than the NVD. We selected accuracy [4, 9, 10, 15, 26]
and completeness [4] as IQ indicators to enable a comparison of
different approaches in future work. Further, we included the indi-
cator uniqueness to measure the uniqueness of vulnerability entries.
Unique entries give automated tools a better distinguishability. For
quantification, we only use structured information that carries
information about the described vulnerability, e.g., the CPE infor-
mation, while we ignore artificially introduced identifiers such as
the CVE-ID. We denote the accuracy, completeness, and uniqueness
scores with acc, comp, and uniq, respectively. To get the overall IQ,
we simply add acc, comp, and uniq together.

Accuracy. Information accuracy has been extensively measured
in previous work [4, 9, 26]. However, previous work either ignores
the free-form vulnerability description or focuses on extracting
specific information, like the software name and software version.
Accuracy can be determined by comparing information with other
sources, in our case the original with the predicted information.
We restrict the accuracy score to a comparison of the original and
predicted CVSS score, since comparing different CWE classes is
not useful. Eq. 2 returns the accuracy of the entire database, where
cvss : V → [0, 10] and predicted_cvss : V → [0, 10] indicate the
current and predicted CVSSv3 scores of a vulnerability, respectively.
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NVD Data Updated
NVD Data

AV Tagger
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AC Value Predictor

AV Value Predictor

CVSS Value Predictor

Named Entities

training with 3.000
labeled descriptions CWE, VF, VP

Figure 3: OVANA architecture pipeline

acc : D → R≥0 (1)

acc(D) =
∑
v ∈D |cvss(v) − predicted_cvss(v)|

|D |
(2)

It basically calculates the averaged absolute ∆ over all original
and predicted CVSS scores.

Completeness. The completeness of information can be deter-
mined by identifying missing information in a vulnerability entry.
As an example, older entries (≤ 2015) sometimes lack CVSSv3 in-
formation. The completeness of a single vulnerability is given by
comp : V → [0, |fields |], which indicates the number of fields with
a value. Eq. 4 shows the completeness formula for the whole range
of vulnerabilities in the dataset D. The lower the value of comp, the
better.

comp : V → [0, |fields |] ⊆ R (3)

comp(D) =
∑
v ∈D c(v)
|D |

(4)

Uniqueness. The uniqueness of vulnerability entries can be iden-
tified by comparing entries with each other, i.e., a vulnerability
v ∈ D is unique iff ∀v ′ ∈ D \ {v} : f ieldsv , f ieldsv ′ , where D
is the set of all vulnerabilities. Since this information alone misses
improvements if large clusters are split into smaller ones, we also
incorporate cluster sizes in Eq. 6, where C ⊂ P(D) is the set of
clusters. The smaller the clusters, the smaller the value, indicating
a better IQ, with a minimum of 0 if all vulnerabilities are unique.

uniq : C → R≥0 (5)

uniq(C) =
∑
c ∈C

(
|c |2

)
|C |

− 1 (6)

All formulas combined give the IQ of the vulnerability dataset
D, where the smallest possible and best IQ value is 0. This answers
our first research question.

3.3.2 Named-Entity Recognition. We want to identify named enti-
ties in the free-form descriptions, e.g., words, which are related to
a specific CVSS parameter, using NER [2, 22].

The labels in this paper are listed in Tab. 1. The former two are
equivalent to the labels of Dong et al. [9], but are not in scope of
this paper. They may be used in future work to correct possible
inconsistent CPE information. The following eight labels are based
on the CVSSv3 base metric, which are used to analyze the accuracy
of the CVSS and complete incomplete vulnerability entries (see
Problem 2 in §3.2). The label weakness was identified to potentially
increase the accuracy of the CWE field (see Problem 1 in §3.2),
while VF and VP are new fields that increase the uniq of entries (see
Problem 3 in §3.2).

3.3.3 CVSS Value Predictors. The CVSS score approximates the
severity of a vulnerability7. It consists of different metrics: the base,
temporal, and environmental metric, and of different parameters
within these metrics. The NVD covers only the base metric. The
other metrics depend on either temporal information that may
change over time (temporal metric), or user specific information,
like IT infrastructure information (environmental metric). The NVD
offers a CVSS base vector, which holds the information used to
calculate the severity in a structured way. This vector however, is
not always available, yielding the highest severity, or contains data
that is inconsistent with the vulnerability description. We try to
(i) calculate a CVSSv3 vector for entries, which provide none; and
(ii) detect inconsistencies between existing CVSSv3 vectors and the
vulnerability description.

For this task, we leverage the NER module to detect named enti-
ties in the description associated with the CVSS vector parameter
(see Tab. 1). Further, we use a neural network to predict the value of
a parameter p based on the words related with that parameter. Here,
we train one model for each parameter (see Tab. 1), resulting in
eight different models. In this way, we are able to predict the CVSS
parameter values for NVD entries with an outdated or non-existent
base vector and detect inconsistencies with the description of the
original vector. To measure these inconsistencies, we use the acc of
the IQ module, which calculates the difference of the original CVSS
score so and the predicted CVSS score sp , i.e., |so − sp |.

In contrast to the machine learning model of Anwar et al. [4],
our pipeline is capable of predicting the whole vector, updating
old values, correcting incorrect values, and suggesting a vector for
newly added entries. In contrast to the work of Elbaz et al. [10], we

7https://www.first.org/cvss/specification-document
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use deep learning algorithms with state-of-the-art embeddings [8]
instead of a linear model with a bag of words approach. The ad-
vantage of their model is that no additional labeling of the data is
required, which can be beneficial in terms of generalization and
variance minimization in machine learning. On the other hand, a
more powerful algorithm can reduce the machine learning bias
error, as in our case. Despite our more sophisticated model, we can
also guarantee some form of explicability since the first part of the
pipeline identifies named entities that lead to the prediction.

4 EVALUATION
This section presents the implementation of the ML models, the
evaluation of those, and the results of the IQ analysis.

4.1 Architecture and Implementation
TheNERmodule consists of one taggermodule for each tag (see Tab. 1).
This way, the NERmodule is able to predict multiple tags for a given
word. On top of each CVSS tag (all CVSS tags in Tab. 1), we build
an additional classifier that predicts the values of the tagged words.

We base our NER tagger and CVSS value predictor module on
deep neural networks. Since neural networks can only work with
numbers and vectors and not with natural language, we need to
encode words. Context-sensitive word embeddings are the state-of-
the-art in this field. We use BERT embeddings [8] and the Flair NLP
framework [2], which are stacked together by concatenation. For
the NERmodule, we feed those embeddings into a bidirectional long
short-term memory (LSTM) network with a Conditional Random
Field (CRF) layer as in the work of Huang et al. [17]. On top of this,
the output nodes are fully connected to the LSTM hidden state.

To train a predictor model for a CVSS parameter p, we input all
word embeddings, labeled with its tag in the vulnerability descrip-
tion and the corresponding CVSS value given in the NVD entry,
and feed them into a gated recurrent unit (GRU) [7]. If a descrip-
tion does not contain information about a CVSS parameter, that
description is skipped in the training process. In the end, a fully
connected layer connects the hidden state to the output nodes.

4.2 Hyperparameters, Dataset Selection, and
Evaluation Metrics

The models of the taggers and classifiers are very similar, so we
use similar hyperparameters. Each tagger and classifier is trained
using stochastic gradient descent (SGD) with a mini batch size of
32 and cross entropy loss. We use a learning rate of 0.1 with a
anneal factor of 0.5 and limit learning to a maximum of 20 epochs.
The embeddings are fine-tuned within each task. The language
model of the flair embeddings has a dropout rate of 0.25, while the
transformer architecture of BERT uses a dropout rate of 0.1. From
the recurrent neural network (RNN) layer (LSTM or GRU) to the
final layer dropout with a rate of 0.5 is applied. On the development
set, we tried several other hyperparameter settings. E.g., we noticed
that the higher the number of epochs, the better the results. We
monitored the micro F1 score on the development set for 5, 15 and
20 epochs. As a result, the availability impact classifier, for example,
had a score of 0.6704, 0.6592, and 0.6536. For the learning rate, we
performed the learning rate range test [32] for several taggers and
classifiers, of which we identified 0.1 as a reasonable value. We also

Table 2: NER tagger module evaluation.

Tag Precision Recall F1
Software name
OS: n = 0

SN 0.8975 0.8226 0.8584
O 0.9792 0.9889 0.9841

Weighted Average 0.9706 0.9713 0.9708
Software version
OS: n = 0

SV 0.8516 0.8965 0.8735
O 0.9892 0.9838 0.9865

Weighted Average 0.9762 0.9756 0.9758
User interaction
OS: n = 0

UI 1.0000 0.8795 0.9359
O 0.9994 1.0000 0.9997

Weighted Average 0.9994 0.9994 0.9994
Scope
OS: n = 50

S 0.3750 1.0000 0.5455
O 1.0000 0.9994 0.9997

Weighted Average 0.9998 0.9994 0.9995
Attack complexity
OS: n = 2

AC 0.6575 0.6005 0.6277
O 0.9725 0.9784 0.9754

Weighted Average 0.9521 0.9539 0.9529

tried the ADAM [19] optimizer instead of SGD, but this produced
worse results for the taggers. A larger batch size was not possible
due to computational restrictions. Encountering a specific type of
errors (explained in the next subsection), we also experimented
with the tagging scheme. We tried the iob2 tagging scheme [20],
which, however, did not lead to significantly better results.

Furthermore, we noticed a high imbalance in the data for the
training tasks. To address this issue, we implemented two versions
of oversampling (OS). One is used in the NER module to oversam-
ple the training descriptions that contain the specific tag, while
the other is used for the CVSS value predictors to oversample the
phrases that contain the specific CVSS value. The OS functions are
parameterised by n ∈ N≥1, denoting the repetition factor for the
specific data instances. The different OS factors are given within
the results of the evaluations.

For both evaluation tasks, we split the annotated data 80%, 10%,
and 10% into a training-, development-, and testing-set. Unlike
many other NER-tasks which split the data sentence-wise, one
entry of the data set is seen as a whole NVD description. This way,
the neural network can integrate the context of the whole entry
without being limited by sentence boundaries. While we kept the
same splits for the NER task, we performed a new split for each
value prediction task so that the multiple classes of each tag are
evenly distributed.

Each evaluation result is presented with the metrics precision,
recall, F1 score, and the weighted average.

4.3 NER Module
An extract of the tagger results from the NER module can be found
in Tab. 2 (for the full overview, see the appendix). It becomes appar-
ent that the weighted average of all taggers is high. However, the
weighted average mostly represents the O tag. While it is important

6
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for the performance of a whole tagger, we are also interested in
the performance for individual tags. From this perspective, we can
observe that the tagger results are mixed. For some cases, e.g., in
predicting software name (SN), software version (SV), and user
interaction (UI), the tagger results are very good, with a F1 measure
of 0.8584, 0.9047, and 0.9359, respectively. However, there are cases
where the tagger performs worse, e.g., when tagging scope (S) or
attack complexity (AC) with F1 scores of 0.5455 and 0.6136, respec-
tively.

As we inspected these errors, we noticed that some taggers are
not able to detect the exact boundaries of tags. For example, see
the SV tagger prediction in the description of CVE-1999-01318: “[..]
denial of service in Sendmail 8.7.5 <SV> and <SV> earlier <SV> through
<SV> GECOS field [..]”. While the tagger correctly tags “8.7.5”, “and”,
and “earlier” as software version, “through” is incorrectly recog-
nized as such. For this reason, we also tested iob2 tagging [20],
where tags are supplemented with beginning (B) and inside (I) tags,
which support the CRF layer due to the potentially decreased search
space. Unfortunately, this did not lead to better results. However,
it should be mentioned that a recall and precision of more than
60% is still far from a poorly learned or random behavior, since
extracting the correct words in a large set of words is a difficult
task. This is the reason why we introduced OS, because otherwise
the classifier would sometimes only predict O-tags, since the in-
teresting tags rarely occur. Moreover, the results suggest that the
tags that occur more frequently seem to be better predicted by the
taggers. This implicates that more annotated training data leads
to better performances of the taggers. The quality measurements
are also influenced by incorrect tagger behavior. In contrast to the
recognition of random words, as described in the error analysis,
errors such as tagging too many words are not particularly serious.
In the end, we only expect the NER module to find the correct tags
within the descriptions. The exact limits at which the tags appear
in the text are helpful, e.g., if we want to make the classifications
more explainable.

4.4 CVSS Value Predictors
Each CVSS value predictor is a neural network suitable for multi-
class prediction of the values of one extracted CVSS tag. This way,
we have, e.g., a specific classifier suitable for the attack vector
(AV) tag and able to differentiate between the associated values
“network”, “adjacent”, “local”, and “physical”.

Similar to the results of the taggers, the classifiers performances
are also scattered; an extract of the results is given in Tab. 3 (for the
full overview, see §6). With the help of the OS technique, the results
for the confidentiality impact (CI) and UI classifiers are good, with
a weighted F1 score of 0.7105 and 0.8863, respectively. However,
there are also classifier that perform worse, despite OS. E.g., it
seems rather difficult for the privileges required (PR) or integrity
impact (II) classifier to predict the correct value (weighted F1 scores
of 0.6386 and 0.6411, respectively). An excerpt of the results of the
classifiers is given in §3 (for a complete overview see §6).

In contrast to the NER tagger results, no obvious error patterns
were found. Nevertheless, it can be assumed that the classifier
performance is also increased when more training data is available,

8https://nvd.nist.gov/vuln/detail/CVE-1999-0131

Table 3: CVSS value classifier evaluation.

Value Precision Recall F1

Confidentiality impact
OS: n = 0

L 0.7059 0.5373 0.6102
N 0.6400 0.6400 0.6400
H 0.7395 0.8544 0.7928

Weighted Average 0.7152 0.7179 0.7105
User interaction
OS: n = 2 (N)

R 0.8889 1.0000 0.9412
N 1.0000 0.5000 0.6667

Weighted Average 0.9111 0.9000 0.8863

Privileges required
OS: n = 2 (H)

L 0.5714 0.6667 0.6154
N 1.0000 0.5556 0.7143
H 0.5000 0.6667 0.5714

Weighted Average 0.6984 0.6296 0.6386

Integrity impact
OS: n = 3 (N)

L 0.8056 0.4603 0.5859
N 0.1429 0.1250 0.1333
H 0.6396 0.8554 0.7320

Weighted Average 0.6817 0.6558 0.6411

as the classifiers can then generalize better. E.g., the classifier for
II does not produce good results for the class “None”. This class is
severely underrepresented, with even OS not yielding satisfying
results. We assume that a simple OS is not sufficient, since the
instances of this class are highly diverse. This problemmight require
a more sophisticated data augmentation technique or more training.

4.5 Information Quality Analysis
With the IQ module, we analyze the dataset using all structured
information available, including ones we added (CPE, CWE, CVSS,
VF, and VP). Further, we identify named entities in descriptions
using the NER module, which are then handed over to the CVSS
predictor module. For the CVSS scores, which are mainly used for
acc, we went for a conservative approach: If we found no informa-
tion about a CVSS parameter and therefore cannot predict a value,
we fall back on the original NVD dataset. If no information is avail-
able here either, we used the worst-case assumption implemented
by the NVD9. We aim at rectifying the information in the NVD
based on the free-form description. Hence, we assume the predicted
information to be more aligned with the real-world severity [16],
which is the reason the acc is added to the IQ score of the original
dataset. The values for VF and VP are implemented directly into
the updated dataset in structured form, since this information is
not available beforehand.

Fig. 4 shows the overall IQ with the different indicators in a
stacked form over the years 1999 to 2019 (which is further broken
down in Fig. 5 and Fig. 6). One can see that the IQ improved drasti-
cally after implementing the additional information and resolving
clusters, indicated by a lower IQ score. We lowered the average IQ
score from ≈ 5.81 to ≈ 2.86, which is an average decrease by 51.2%.
Fig. 7 depicts the differences of the IQ on an annual basis.

9https://nvd.nist.gov/vuln-metrics/cvss
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Figure 4: Stacked IQ compared: For each year, the first bar
represents the IQ for the original NVD dataset, while the
second one represents the IQ of the updated NVD dataset.
Note: the lower the score, the better the IQ (see §3.3.1). The
depicted indicators are comp, acc, and uniq.

Figure 5: Completeness compared per year. Note: the lower
the score, the better the IQ (see §3.3.1).

Figure 6: Uniqueness compared per year. Note: the lower the
score, the better the IQ (see §3.3.1).

Completeness. In Fig. 5 the original comp shows an average of
≈ 2.78. It can be seen to remain at a mean of ≈ 2.97 until (and
including) 2015, after which it drops to a mean of ≈ 2.01. The rea-
son for this trend is the introduction of the CVSSv3 in 2015 and
its adoption by the NVD at the end of 2015. All NVD entries after
2015-12-20 are published with a CVSSv3 score, which is reflected
in the data. Further, the dataset lacks structured information about
affected paths and functions, resulting in a base comp of 2. In the

Figure 7: Relative deviations per year of comp, uniq, and IQ.

updated dataset, comp drops to an average of ≈ 1.73, i.e., showing a
decrease by 36.31% (see Fig. 7). The improvement can be explained
by our conservative approach. This way, each vulnerability is as-
signed a score, eliminating all missing CVSSv3 scores. Additionally,
more vulnerability descriptions include information about VFs or
VPs, reflected by the slow decline from 1999 until 2008. The remain-
ing missing fields are VF and VP information and the CPE entries,
which, however, are beyond the scope of this paper.

Uniqueness. The uniq in Fig. 6 shows a peak in 1999 of the orig-
inal dataset at ≈ 12.94, but averages out thereafter with a value
of ≈ 1.63 excluding 1999 (at ≈ 2.17 including 1999). One can see
two peaks in 2012 and 2017 of the original dataset with ≈ 2.76 and
≈ 4.26, respectively. The peak in 1999 arises from a widespread
lack of structured information (cpe, cwe, and cvss) and forms a
cluster of 117 entries. In 2012, there was one specific cluster with
45 vulnerability entries for Apple iTunes with no cwe and CVSS
specification. These 45 entries are in a range of 123 ids, indicating
some sort of batch-add, i.e., all of which were added within a day
or two. Similarly, in 2017 there was a cluster for tcpdump10 which
contained a very broad CPE specification, the same CWE class
and the same CVSS vector for all entries. Due to their consecutive
IDs, these vulnerabilities are also probably batch-added. Some of
the batch-added entries even have the same description (e.g., the
largest cluster in 2011), which is problematic for the NER module.
With such descriptions, the NER module is unable to identify dis-
tinctive information. The updated dataset shows an average uniq
of 1.12%, i.e., a decrease by 53.85% (see Fig. 7). Relatively speak-
ing, the original and updated uniq look quite similar. This results
from the aforementioned problem of the NER module with equal
descriptions, which is common in large clusters.

5 DISCUSSION
This section presents the contributions of the research conducted
in this paper and discusses its limitations.

5.1 Contributions
The contributions of this paper are are discussed in the following
section. We categorized them in theoretical and practical contribu-
tions.

10https://www.tcpdump.org/
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The first theoretical contribution is the definition of an objec-
tive IQ measurement for vulnerability databases, based on
insights in different IQ frameworks [1, 11, 25] (T1). To our best
knowledge, no published study introduced such a measurement.
Previouswork used self-containedmeasurements bound to their use
case [4, 9, 10]. Our approach allows for a comparison of different ap-
proaches, independent of the approach itself. The second theoretical
contribution is the proposed machine learning pipeline (T2).
It consists of a NER tagger (see §3) that is able to identify relevant
CVSS information, and CVSS predictors which predict the value of
a CVSS parameter based on the identified named entities. While
Elbaz et al. [10] use linear models with a bag-of-words approach
and need no labeling effort, we use deep learning models with
embeddings and manually labeled data. Our pipeline overcomes
the limitation of the linear model, but is restricted in the data va-
riety since the training data needs to be manually labeled. Both
approaches try to find a way to make the prediction reasonably ex-
plainable, which is an important topic in machine learning research
and especially important for the CVSS score prediction, since the
manual assignment of it lacks transparency.

Our proposed tool is able to identify additional information
in the free-form descriptions and decreases the cluster sizes
within the NVD (P1). This increases the uniqueness of each vul-
nerability and speeds up the search for vulnerabilities in source
code. Moreover, it does allow faster reproducibility of vulnerabili-
ties and consequently faster patches. Previous work [9] used similar
schemes to identify named entities, but focused on singular pieces
of information, e.g., software name or software version, while our
approach captures further information (VP, VF, and CVSS informa-
tion). One important thing to note here is that more information
does not necessarily make everything more secure. This has been
discussed by You et al. [35] as they collected semantic informa-
tion about vulnerabilities on references to automatically generate
exploits. Hence, we only include information which was already
available in the NVD, just not in a structured form. Our tool is po-
tentially able to guide security experts and practitioners dur-
ing CVSS assessment (P2). Immediately after a vulnerability is
publicly disclosed, usually no information is available besides a free-
form description and references, if any [10]. Our proposed tool is
able to assist security experts in finding an appropriate CVSS score
and help practitioners assess the severity of a vulnerability when no
score is available. Further, it provides an unbiased suggestion, i.e.,
individual parameters are handled separately. The machine learn-
ing pipeline consists of a NER tagger, which, among other things,
is able to identify the specific CVSS vector fields, and a CVSS value
predictor, that classifies the found fields into the appropriate CVSS
values. In addition, the pipeline enables a form of interpretability
of the CVSS prediction which is helpful when a score already exists
but it is not clear on which basis the score was assigned. This leads
to the next practical implication. Asmentioned earlier, the CVSS has
been highly criticized for its non-transparent scoring system (see
§2). Our proposal attempts to increase the transparency of the
scoring (P3). The tool is split into two layers of machine learning
models. Hence, its interim results, i.e., the key words that led to the
CVSS prediction, can be presented to the user by highlighting its
associated NER tag, CVSS tag, and predicted CVSS value. This can
assist the security expert in CVSS rating, by offering some degree

of explainability. Enriched with the descriptions of the respective
tag and value, the information is also essential for practitioners
seeking further information about severity classification.

5.2 Limitations and Future Work
Despite the promising results, our paper has some limitations that
could be addressed in future work in this area.

Information Quality. This paper evaluates the IQ based on the
indicators of accuracy, completeness, and uniqueness. The selection
is based on research conducted in previous work in this field. In
order to gain a more universal insight into IQ, additional indicators
need to be included into the calculation. Further, we analyzed the IQ
without the inclusion of results of analysis done in previous work,
if they are not already included in the NVD [4, 9]. Future work
could increase the number of indicators used for the IQ assessment
and could evaluate the IQ improvements of previous inconsistency
analyses. Furthermore, future work could look deeper into the topic
of automatic CPEs generation based on vulnerability reports, as
there are still problems as indicated in §3.2, and adjust this method
to additional vulnerability databases.

Machine Learning. Our results show a high result fluctuation
of the NER and CVSS modules. Further, there is a correlation be-
tween the quality of the results and the amount of training data
available. Since we use manually labeled data, future work could
create a crowd sourcing task to gain more training data. Another
approach to artificially increase the size of the training data set is
to incorporate sophisticated data augmentation techniques [5, 34]
to increase the size of this training data set. If only the CVSS score
is of interest, it would be possible to learn a regression model that
does not require manual labeling because the score can be retrieved
from the NVD.

6 CONCLUSION
Securing IT infrastructures is becoming more difficult every year.
Vulnerability databases are one of many information sources for IT
security experts to publish and learn about new threats. Previous
work has shown inconsistencies in vulnerability databases and
mixed results in terms of reproducibility, which calls for automated
tools to obtain more information about published vulnerabilities
and improve the quality of the information available. We answered
our first research question, how to assess the IQ of vulnerability
databases, by defining an IQ metric based on the indicators of
accuracy, completeness, and uniqueness. A preliminary analysis
of the NVD revealed large clusters of vulnerabilities sharing the
same structured information, but with distinguishable descriptions,
containing further information about the vulnerabilities. Hence,
we answered our second research question, on which information
improves the IQ of the NVD by using a tool called OVANA which
analyzes the IQ of the NVD using state-of-the-art NLP and ML. It
outlines important words and terms in the free-form descriptions of
the vulnerability entries and implements them in the vulnerability
dataset. With this technique, we were able to improve the IQ of the
NVD by 51.23%. Additionally, our tool is able to guide IT security
experts in selecting the correct values for CVSS parameters.
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APPENDIX
Table 4: Evaluation results of the classifiers of the CVSS
value predictor.

Value Precision Recall F1

Attack Vector
OS: n = 10

N 0.8357 0.9271 0.8790
L 0.5926 0.3636 0.4507
A 0.8750 0.5385 0.6667
P 0.3333 0.5000 0.4000

Weighted Average 0.7911 0.8048 0.7891

Attack Complexity L 0.9174 0.9524 0.9346
H 0.1667 0.1000 0.1250

Weighted Average 0.8521 0.8783 0.8642

Privileges Required
OS: n = 2 (H)

L 0.5714 0.6667 0.6154
N 1.0000 0.5556 0.7143
H 0.5000 0.6667 0.5714

Weighted Average 0.6984 0.6296 0.6386
User Interaction
OS: n = 2 (N)

R 0.8889 1.0000 0.9412
N 1.0000 0.5000 0.6667

Weighted Average 0.9111 0.9000 0.8863

Confidentiality Impact
OS: n = 0

L 0.7059 0.5373 0.6102
N 0.6400 0.6400 0.6400
H 0.7395 0.8544 0.7928

Weighted Average 0.7152 0.7179 0.7105

Integrity Impact
OS: n = 3 (N)

L 0.8056 0.4603 0.5859
N 0.1429 0.1250 0.1333
H 0.6396 0.8554 0.7320

Weighted Average 0.6817 0.6558 0.6411

Availability Impact
OS: n = 0

L 0.5000 0.3636 0.4211
N 0.7381 0.8158 0.7750
H 0.8333 0.8716 0.8520

Weighted Average 0.7521 0.7667 0.7567
Scope
OS: n = 0

U 0.6667 1.0000 0.8000
C 1.0000 0.5000 0.6667

Weighted Average 0.8333 0.7500 0.7333

Table 5: Evaluation results of the taggers of the NER
modules.

Tag Precision Recall F1
Attack Vector
OS: n = 0

AV 0.7610 0.8016 0.7808
O 0.9738 0.9669 0.9703

Weighted Average 0.9491 0.9478 0.9483
Attack Complexity
OS: n = 2

AC 0.6575 0.6005 0.6277
O 0.9725 0.9784 0.9754

Weighted Average 0.9521 0.9539 0.9529
Privileges Required
OS: n = 10

PR 0.7647 0.5123 0.6136
O 0.9939 0.9980 0.9959

Weighted Average 0.9910 0.9920 0.9912
User Interaction
OS: n = 0

UI 1.0000 0.8795 0.9359
O 0.9994 1.0000 0.9997

Weighted Average 0.9994 0.9994 0.9994
Confidentiality Impact
OS: n = 0

CI 0.8115 0.7938 0.8026
O 0.9851 0.9867 0.9859

Weighted Average 0.9734 0.9737 0.9735
Integrity Impact
OS: n = 0

II 0.8179 0.7666 0.7915
O 0.9881 0.9912 0.9896

Weighted Average 0.9798 0.9803 0.9800
Availability Impact
OS: n = 0

AI 0.8134 0.8028 0.8081
O 0.9851 0.9861 0.9856

Weighted Average 0.9731 0.9732 0.9732
Scope
OS: n = 50

SC 0.3750 1.0000 0.5455
O 1.0000 0.9994 0.9997

Weighted Average 0.9998 0.9994 0.9995
Software Name
OS: n = 0

SN 0.8975 0.8226 0.8584
O 0.9792 0.9889 0.9841

Weighted Average 0.9706 0.9713 0.9708
Software Version
OS: n = 0

SV 0.8516 0.8965 0.8735
O 0.9892 0.9838 0.9865

Weighted Average 0.9762 0.9756 0.9758
Vulnerable Path
OS: n = 0

VP 0.8448 0.7091 0.7710
O 0.9940 0.9973 0.9957

Weighted Average 0.9910 0.9915 0.9911
Vulnerable Function
OS: n = 0

VF 0.9107 0.7463 0.8204
O 0.9968 0.9991 0.9979

Weighted Average 0.9957 0.9959 0.9957
Weakness
OS: n = 2

W 0.6968 0.7644 0.7290
O 0.9864 0.9809 0.9836

Weighted Average 0.9707 0.9691 0.9698

11


	Abstract
	1 Introduction
	2 Related Work
	2.1 Report Analysis
	2.2 Vulnerability Severity Assessment
	2.3 Research Gap

	3 Concept
	3.1 Dataset
	3.2 Preliminary Analysis
	3.3 OVANA Architecture

	4 Evaluation
	4.1 Architecture and Implementation
	4.2 Hyperparameters, Dataset Selection, and Evaluation Metrics
	4.3 NER Module
	4.4 CVSS Value Predictors
	4.5 Information Quality Analysis

	5 Discussion
	5.1 Contributions
	5.2 Limitations and Future Work

	6 Conclusion
	Acknowledgments
	References

