
SCAtt-man: Side-Channel-Based Remote Attestation for
Embedded Devices that Users Understand

Sebastian Surminski
University of Duisburg-Essen

Essen, Germany
sebastian.surminski@uni-due.de

Christian Niesler
University of Duisburg-Essen

Essen, Germany
christian.niesler@uni-due.de

Sebastian Linsner
Technical University of Darmstadt

Darmstadt, Germany
linsner@peasec.tu-darmstadt.de

Lucas Davi
University of Duisburg-Essen

Essen, Germany
lucas.davi@uni-due.de

Christian Reuter
Technical University of Darmstadt

Darmstadt, Germany
reuter@peasec.tu-darmstadt.de

ABSTRACT
From the perspective of end-users, IoT devices behave like a black
box: As long as they work as intended, users will not detect any
compromise. Users have minimal control over the software. Hence,
it is very likely that the user misses that illegal recordings and
transmissions occur if a security camera or a smart speaker is
hacked. In this paper, we present SCAtt-man, the first remote
attestation scheme that is specifically designed with the user in
mind. SCAtt-man deploys software-based attestation to check the
integrity of remote devices, allowing users to verify the integrity
of IoT devices with their smartphones. The key novelty of SCAtt-
man resides in the utilization of user-observable side-channels
such as light or sound in the attestation protocol. Our proof-of-
concept implementation targets a smart speaker and an attestation
protocol that is based on a data-over-sound protocol. Our evaluation
demonstrates the effectiveness of SCAtt-man against a variety of
attacks and its usability based on a user study with 20 participants.

CCS CONCEPTS
• Security and privacy → Embedded systems security; •
Computer systems organization → Embedded systems.

KEYWORDS
attestation; firmware security; IoT; smart speaker

ACM Reference Format:
Sebastian Surminski, Christian Niesler, Sebastian Linsner, Lucas Davi,
and Christian Reuter. 2023. SCAtt-man: Side-Channel-Based Remote Attes-
tation for Embedded Devices that Users Understand. In Proceedings of the
Thirteenth ACM Conference on Data and Application Security and Privacy
(CODASPY ’23), April 24–26, 2023, Charlotte, NC, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3577923.3583652

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0067-5/23/04. . . $15.00
https://doi.org/10.1145/3577923.3583652

1 INTRODUCTION
The Internet of Things (IoT) enhances previously unconnected
devices with Internet access. Popular examples are smart lamps,
household appliances, security cameras, smart TVs, and smart
speakers. Nowadays, IoT devices are ubiquitous: in 2019 the number
of connected IoT devices already reached 35.7 billion [57]. It is
expected that the global IoT would triple in size over the next
10 years, from an estimated 182 billion dollars in 2020 to more
than 621 billion dollars in 2030 [69]. IoT devices often perform
important security-critical tasks, for example in a smart door lock,
or operate in privacy-sensitive areas, such as a security camera
or as a smart speaker [62]. Moreover, IoT devices, like any other
computing system, suffer from vulnerabilities and offer a large
attack surface [4]. Compromised IoT devices can have severe
consequences, which are not limited to the individual user, as the
Mirai botnet has shown. This botnet, consisting of consumer devices
like routers and IP cameras, performed one of the largest denial-of-
service attacks peaking at 1.1 Tbit/s, targeting the OVH hoster and
many popular websites [39].

IoT devices are worthwhile targets as typical IoT devices are
black-box systems to the user with a limited understanding of
threats to security and privacy [72]. Typically, a user does not have
any direct control over the software running on the IoT device, but
solely configures and maintains IoT devices using a web interface
or a companion app [4]. Malware can be deployed before the device
was purchased by the user or afterward through backdoors and
vulnerabilities. A compromise with malware will not be detected if
the functionality does not fail [5]. For instance, 48% of companies
reported they are unable to detect whether an IoT device on their
network suffers from a breach or is part of a botnet [30].

Remote attestation is a popular method to verify the integrity
of a remote and untrusted device. Many attestation methods have
been proposed for embedded and IoT devices as well as sensor net-
works [63]. The main challenge of remote attestation is to obtain
trustworthy measurements from an untrusted device. In general,
three different attestation approaches exist to address this prob-
lem: hardware-based, software-based, and a combination of both.
Hardware-based approaches rely on a trusted computing subsys-
tem inside the untrusted device [6, 15, 35, 52, 68]. Hybrid attesta-
tion leverages a hardware/software co-design to take trustworthy
self-measurements [17, 47]. In contrast, software-based attestation

225

https://doi.org/10.1145/3577923.3583652
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3577923.3583652&domain=pdf&date_stamp=2023-04-24

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Sebastian Surminski, Christian Niesler, Sebastian Linsner, Lucas Davi, & Christian Reuter

approaches [7, 61, 64] do not require any special hardware fea-
tures but rely on precise timing measurements of the attestation
function. That is, they rely on the assumption that an attacker
cannot accelerate the measurement function [61]. Furthermore,
the exploitation of implementation flaws undermines the secu-
rity of software-based attestation [12]. Hence, there is a common
agreement that hardware-based and hybrid attestation schemes
are preferable. However, many IoT devices neither feature trusted
computing components nor the necessary hardware extensions for
hybrid attestation. Replacing these legacy IoT devices to enable
hardware-based or hybrid attestation protocols is often not an op-
tion in practice; especially considering that the computing hardware
is deeply integrated into the respective IoT device. Consequently,
software-based attestation is often the only viable approach.

For hardware-based and hybrid attestation schemes, the attested
devices feature secret keys to authenticate themselves. However, as
there is no secure key storage in software-based attestation, there
is no root of trust that allows authentication of the attested de-
vice. In fact, any information on the attested device is accessible
to the attacker. Hence, an attacker can relay attestation requests
to a different or even a simulated device without being noticed
by a remote verifier. Such so-called offloading attacks, i.e., forged
attestation reports from other devices, are an inherent problem in
software-based attestation due to the lack of a secure root of trust.

Contributions.We propose SCAtt-man, the first remote attesta-
tion scheme specifically designed to allow user-observable attesta-
tion and thereby solve the problem of missing device authentication
in software-based attestation. For the first time, we exploit side-
channel information (e.g., light or sound) observable by the user
to evaluate the attestation result allowing the user to identify the
device that is being attested and detect offloading attacks.

Although it has been popular to use side-channels such as
sound [76], ambient sound [31, 41, 60], or acceleration [33, 71]
for context-based authentication, that is, key exchange or device
pairing, we are not aware of any remote attestation scheme
that leverages such side-channels. Using such communication
channels for attestation is not straightforward, as implementing
a secure software-based attestation scheme involves tackling the
aforementioned challenges [61]. The usage of side-channels allows
secure deployment of software-based attestation on legacy IoT
systems without unrealistic hardware requirements and changes. In
fact, we demonstrate that users can use their smartphones together
with built-in sensors and actuators to attest the IoT device.

Attestation via side channels has the following advantages:
(1) Communication is user-observable. (2) Communication is
limited to short distances, limiting a remote attacker. (3) The
Internet connectivity of the attested device can be interrupted
to prevent offloading attacks. (4) The transmission time can be
predicted precisely, which is a crucial requirement for software-
based attestation. The missing device authentication in software-
based attestation is being replaced by the user, who can manually
identify the device that is currently being attested. This approach
offers users an intuitive way to identify IoT devices and the devices’
integrity. This makes SCAtt-man the first framework for user-
friendly software-based attestation. SCAtt-man does not require
complex profiling or measurements during installation. If the users’

smartphone already knows the correct configuration of the attested
device, e.g. because it was used to initially configure the device, the
smartphone can confirm the correctness of the attested device’s
configuration, the integrity of the device’s software, and detect
unwanted modifications or malware. In practice, this attestation
functionality can also be integrated into the vendor’s companion
app that is often used to configure or use the IoT device [4].

In summary, we provide the following contributions:
• We propose SCAtt-man, a new attestation scheme that
leverages side-channels for software-based attestation that
the user can observe and thereby efficiently solves the root-
of-trust problem in software-based attestation.

• SCAtt-man works on legacy hardware avoiding the need
for additional hardware modules or actuators. It uses built-
in hardware features, such as the built-in microphone and
speaker of a smart speaker and a standard smartphone as a
verifier.

• We implemented SCAtt-man in a smart speaker based on the
popular ESP32 microcontroller and implemented a verifier
as an Android app.

• In the evaluation, we show, based on a full end-to-end
example, how SCAtt-man detects a real-world attack on
a smart speaker via an insecure configuration interface
(Section 7.3). In extensive experiments, we verified that
SCAtt-man ran without any false positives and negatives,
allowing a reliable attestation.

• We performed a user study to evaluate the usability and
user experience of SCAtt-man (Section 7.5). Our user study
not only showed that SCAtt-man provides good usability,
but participants also stated that they actually believe that
attestation can detect a device’s compromise and that they
would use such functionality if their own devices featured
such an attestation functionality.

2 BACKGROUND
In this section, we explain the foundations and concepts required
to understand SCAtt-man.

2.1 Software-based Remote Attestation
Remote attestation is a security service that allows a device to
check the integrity of an untrusted remote device [47]. To do so, the
attested system inhabits a proving mechanism that allows taking
self-measurements; therefore the attested device is called prover.
These attestation reports are sent to an external party, called verifier,
for verification. The main challenge of any remote attestation
scheme is how to obtain a secure self-measurement of an untrusted
device [14]. There exist different approaches to tackle this problem.
In hardware-based attestation schemes, the attestation is performed
by an isolated trusted computing module [6, 15, 35, 52, 68]. In
hybrid attestation schemes, measurements are taken based on a
hardware/software co-design [17, 47]. However, both hybrid and
hardware-based attestation require special hardware. In contrast,
software-based attestation schemes do not require special hardware
features and can hence be used on commodity and legacy hardware
including IoT devices. In the following, we focus on software-based
attestation schemes. We elaborate on hardware-based and hybrid

226

SCAtt-man: Side-Channel-Based Remote Attestation for Embedded Devices that Users Understand CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

attestation schemes in Section 8. The security of software-based
attestation relies on the execution time of the software on the prover.
The verifier initiates the attestation by sending a request to the
prover. This request typically includes a nonce to prevent replay
attacks. The prover takes this nonce to perform a self-measurement,
typically using a hashing function. Thereafter, the prover sends the
result back to the verifier. The verifier measures the response time
of the prover. If the response time is within a predefined margin,
the measurement is assumed to be benign. A delayed response
indicates that the prover has been compromised. Obviously, this
requires precise measurement of the actual execution time and exact
prediction of the expected execution [61]. Hence, this poses strict
requirements for the implementation: the attestation process may
not be able to be accelerated under any circumstance. Otherwise,
the attacker can alter the result of the attestation process without
violating timing constraints [12].

2.2 Smart Speakers
Smart speakers are IoT devices that take natural spoken language
as input and react appropriately by responding using synthesized
voices or performing tasks. These tasks range from the supply
of information such as the current time or weather, telling jokes,
playing music, over the setting of timers and creation of lists,
up to sending messages and controlling other connected IoT
devices such as lights or smart locks [34]. Smart speakers are
very popular; In 2020, more than 150 million units have been
sold worldwide [10]. Studies have shown that users are highly
concerned about the security of smart speakers. Although users
often do not see threats in devices that do not record audio or
video, such as smart plugs or light bulbs, they are aware of the
privacy risks of smart speakers and IP cameras [72, 77]. Smart
speakers feature microphones, audio-processing hardware, and
speakers and constantly listen for a so-called ‘wake word’ [70]. This
wake word starts the interaction with the smart speaker: the smart
speaker records the user’s voice and sends it to a cloud service
for further processing [19]. Smart speakers suffer from a large
attack surface as they incorporate a complex architecture [19]. That
is, they combine an IoT device with a combination of local and
cloud features, including natural language processing techniques.
The functionality of smart speakers can often be enhanced with
third-party extensions developed by external vendors. For example,
there are more than 18,000 English extensions available for Google
Assistant [37]. For Amazon’s Alexa speech assistant, more than
80,000 so-called skills are available in the US [36]. Malicious
extensions can illegally access sensitive user data [13, 32, 65, 75],
eavesdrop on private conversations [32], or even take over the
smart speaker and connected smart home devices, including a door
lock and the home security system [43].

3 PROBLEM STATEMENT & CHALLENGES
Implementing reliable self-measurements for remote attestation on
untrusted and potentially compromised devices involves tackling
several challenges, especially on IoT devices that lack hardware
security modules like trusted computing components. IoT devices
are often integrated into complex ecosystems, where multiple
devices are working together, communicating over the Internet,

and relying on the vendor’s cloud services. This poses challenges
towards timing measurements and reliably identifying devices
in software-based attestation, i.e., precise timing measurements
require uninterrupted and direct communication. An unexpected
distortion in communication, e.g., an unexpectedly long delay
will make the attestation fail [61]. Often, software-based remote
attestation even requires one-hop communication [64]. The lack of
reliable device authentication allows attackers to shift attestation
tasks to other devices or emulate devices without being detected.
To solve this problem, research proposed to restrict communication
with other devices, for example by using a dedicated IoT gateway to
prevent the attested device to communicate with other, unattested
devices [67], thereby detecting all offloading attacks. While this
is a solution for managed environments such as companies, this
is not a practical solution for home deployments where there are
many devices that are not centrally managed, including IoT devices
which are often vulnerable [4], and more powerful devices like
PCs and smartphones. Furthermore, designing systems to allow
end-users to verify a device’s integrity, and hence put trust into this
particular device, is a difficult task combining technical soundness
and usability. In summary, implementing a secure attestation
scheme for legacy IoT devices poses the following challenges:
Challenge 1: Secure self-measurement. Secure software-based
attestation requires careful implementation. The security of software-
based attestation relies on its deterministic minimal runtime. As
discussed in Section 2.1, an attacker may not be able to speed up
the execution. If an attacker can find any faster implementation of
the attestation function, the saved time can be used to compromise
the attested device or alter attestation reports.
Challenge 2: Offloading attacks. In software-based attestation,
attested devices do not feature a hardware root of trust, but the
security solely relies on timing properties. Hence, the verifier cannot
securely authenticate the attested device and detect if an attested
device is replaced by a different device or a simulation, or if an
attestation request is relayed to another instance.
Challenge 3: Precise response times. IoT devices often use
indirect communication through cloud services. They do not
operate on their own but are integrated into ecosystems consisting
of multiple different devices and are closely operating with their
vendor’s cloud services. Indirect communication is susceptible to
relay attacks and increases round trip times and makes response
times more fluctuating, complicating software-based attestation.
Challenge 4: Usability. For the user, IoT systems behave like
a black box. Cryptographic functions, Internet communication,
and attestation protocols in particular, are abstract and unintuitive
concepts. Developing user-understandable attestation protocols
that users intuitively understand is crucial to gain the user’s trust
in IoT devices, especially in critical security and privacy domains.
Challenge 5: Legacy devices. There are billions of legacy IoT
devices that do not feature trusted computing components. Security
solutions for these systems must not require additional hardware
extensions, extra sensors, or new communication technologies.

SCAtt-man addresses these challenges by developing a user-
observable communication channel to perform software-based
attestation. As we will show, this effectively solves the root-of-
trust problem in software-based remote attestation and results in a
user-comprehensible attestation process.

227

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Sebastian Surminski, Christian Niesler, Sebastian Linsner, Lucas Davi, & Christian Reuter

User

Internet

Wi-Fi

Smart Speaker

Attestation

Request

Response

Smartphone

observes

Context, e.g., Room

Attacker

IoT devices

Backend server

Figure 1: Concept of SCAtt-man attestation: The user can observe
the communication between the prover and the verifier.

4 ASSUMPTIONS AND THREAT MODEL
Assumptions. We consider an untrusted IoT device that features
a suitable sensor and actuator to be used as a side-channel for
communication. In our implementation, we leverage a microphone
and a speaker, as they are always available in smart speakers. Note
that other combinations are possible as well, e.g., a light sensor
or camera and a lamp or display [58]. Furthermore, we assume
that the user is close to the IoT device and within reach of this
side-channel. The user has a trusted device for verification with
suitable sensors and actuators. In our implementation, we use a
standard a smartphone with built-in speaker and microphone. We
furthermore assume that there are no ambient disturbances. In
particular, we assume that the attacker is not in range of the sensors,
i.e., we consider a remote attacker. We assume that the Internet
connectivity of the attested device can be interrupted, e.g., using a
switch. Alternatively, we also propose a solution to limit the Internet
connectivity of the attested device using the user’s smartphone.
To do so, both the smartphone and the IoT device feature a Wi-Fi
interface.
Threat model. We assume that a remote attacker can remotely
compromise the smart speaker, e.g., alter the configuration or in-
stall malware. This can be achieved by means of typical software
vulnerabilities, such as memory errors [4], or insecure or insuffi-
ciently protected interfaces, a common problem in IoT devices [51].
Similar to all existing software-based attestation proposals, we do
not consider physical attacks [61, 63, 67]. This means the attacker
cannot alter the hardware of the attested device, e.g., replace or
modify it. Furthermore, the attacker is not in range of the sensors
used for the communication side-channel, i.e., in the hearing range.
We assume the user’s smartphone to be trusted.

5 CONCEPT OF SCATT-MAN
The goal of SCAtt-man is to make communication observable by
the user, allowing the user to oversee the attestation process and
identify the device being attested, thereby solving the inherent
problem of missing authentication in software-based remote at-
testation. We achieve this goal by using a side-channel for the
communication between the verifier and the prover. While in tra-
ditional attestation schemes communication is assumed to take
place via wires or wireless, such as Ethernet or Wi-Fi, we explicitly
opt for alternative means of communication. The limited reach of

such transmissions reduces possible attacks. Furthermore, in con-
trast to radio communication, attacks will be noticed by the user.
A suitable communication channel fulfills two properties: (1) It is
user-observable. (2) It can be sent and received with built-in sen-
sors in both the attested device and the device used for verification,
i.e., a standard smartphone. For example, well-suited communica-
tion channels are sound and light. A standard smartphone features
a microphone and speaker, as well as a camera and a display or
an LED used as a flash. Although using side channels for attes-
tation seems like a straightforward concept, the development of
a secure software-based attestation scheme using side-channels
needs tackling specific challenges such as developing a suitable
communication protocol and coping with the manifold attacks on
software-based attestation. In the following, we explain how we
developed a reliable audio transmission protocol, a secure attes-
tation function, restrict Internet access for the attested device to
prevent offloading attacks, and integrated a proof-of-concept of
SCAtt-man into a smart speaker. Figure 1 illustrates the concept
of a smart speaker enhanced with SCAtt-man attestation. As ex-
plained in Section 2.2, smart speakers are a good example to show
the applicability of SCAtt-man attestation. First, a smart speaker is
a typical and popular type of IoT device. Second, users are particu-
larly concerned about the security of those devices [72, 77]. This is
an important aspect, as the user needs to initiate the SCAtt-man
attestation manually and observe the attestation process.

5.1 Audio Protocol
The communication between the prover, i.e., the attested smart
speaker, and the verifier, in this case the user’s smartphone, is
performed via audible sound. This makes the attestation process
user-observable. The communication consists of digital data en-
coded into sounds. It is not necessary that the user is able to decode
the data, it is sufficient that the user can identify the devices that
are communicating. This way, offloading attacks, i.e., when another
device responds to the attestation request, are effectively prevented.
Furthermore, a remote attacker is not able to influence this local
communication. Due to this communication channel, the attes-
tation cannot be run in the background but requires interaction
with the user. Users manually run the attestation process. To do
so, we provide a smartphone app that guides users through the
attestation process. The app explains the necessary steps, runs the
attestation, and shows the result. A strict requirement for software-
based attestation are predictable execution and transmission times.
Hence, the protocol should feature a fixed message length and do
not have error-correction codes such as parity bits. Otherwise, an
attacker could exploit this circumstance to gain a timing advan-
tage by starting the attestation process before the transmission has
been completed by using error correction to complete incomplete
transmissions. At the same time, the protocol must have a reliable
transmission: the user cannot distinguish between a transmission
error and attestation failure on a compromised device. Data-over-
sound protocols have many parameters, e.g., frequencies, encoding
of bits, and duration of the transmission. We perform a detailed
explanation of the implementation of the data-over-sound proto-
col in Section 6.3. In Section 7 we show how we fine-tuned these
transmission parameters to obtain a reliable transmission.

228

SCAtt-man: Side-Channel-Based Remote Attestation for Embedded Devices that Users Understand CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

5.2 Attestation Function
The main component of any attestation scheme is the attestation
function. The attestation function takes the self-measurement of
the attested device which is then transmitted to the verifier. SCAtt-
man attests the integrity of software and configuration of the
attested device. We restrain SCAtt-man to static attestation due
to the infrequent attestation runs: Every attestation run has to
be manually initiated by the user. Furthermore, the attestation
cannot be performed in the background as it plays audio and fully
utilizes computing resources of the attested device, forcing one
to pause the speech assistant while the attestation is executed.
More sophisticated attestation schemes like runtime attestation [1]
and data-flow attestation [2, 17] need to be run in background
during normal operation of the attested device, and rely on frequent
communication with the verifier during attestation. Running
attestation without sending the results to the verifier does not
give any security benefit as a compromise will not be detected.
Therefore, attestation schemes that attest the program runtime are
by design incompatible with SCAtt-man. There are several aspects
to be considered when designing an attestation function:
Optimal implementation. The security of software-based attesta-
tion solely relies upon the computational capabilities of the attested
device and timing thresholds. This induces that an attacker cannot
significantly accelerate the execution speed of the attestation func-
tion. We solve this problem by using built-in hardware modules
to run the attestation function. The hardware-accelerated execu-
tion of the attestation function is faster than any software-based
implementation on the same device. In case no hardware-based
acceleration is available, we use standard and widely-used hashing
functions. To prevent acceleration using parallelization, we use
hashing functions that use the Merkle–Damgård scheme, which
does not allow parallelization [42].
Replay attacks. In replay attacks, the attacker responds to an
attestation request with pre-computed or old attestation reports.
SCAtt-man prevents such attacks by including a random nonce
into the attestation request. This nonce, chosen by the verifier and
hence out of the control of the attacker, ensures freshness of the
attestation reports.
Empty memory. An attacker can use any memory not covered by
the attestation. Therefore, it must be ensured that the attestation
function actually covers all executablememory and that the attacker
cannot compress any memory to obtain unattested memory which
can be used to store malicious code. SCAtt-man addresses this
problem by closely monitoring execution times of the attestation
function. Deviations of the runtime of the attestation functions due
to the on-the-fly-decompression of data, while the attestation is
running in parallel, will be detected.
Runtime. Determining the correct runtime of the attestation
function is crucial for the security of software-based attestation.
Therefore, we designed the SCAtt-man attestation function such
that its runtime can be configured by increasing the number of
iterations. This feature can be used to obtain a runtime that can be
clearly distinguished from compromised ones within the attestation
process. In Section 7.1, we investigate in detail the runtime of the
attestation function to determine strict thresholds and distinguish
between correct and compromised runs of the attestation function.

5.3 Limiting Internet Access
Preventing offloading to an external party is crucial for secure
software-based attestation. Offloading means relaying the attes-
tation request sent by the verifier to another device. Because in
software-based attestation there is no physical security, there is
no way to authenticate the device being attested, besides using re-
sponse times. The runtime of the attestation function on the attested
device is longer than transmission to an external party, like a cloud
service or another IoT device, takes. Thus, an external transmission
must be prevented. There are two possibilities to achieve this. First,
use a hardware-based method that disables communication like a
hardware kill switch. In case of a wired connection, it would also
be sufficient to unplug the network connection. Alternatively, we
propose a software-based solution to limit the Internet connection
via Wi-Fi of the attested device.
Hardware kill switch. Integrating a hardware kill switch to deac-
tivate network functionality is an elegant solution as it is a simple,
user-understandable concept. Furthermore, the usage of such a but-
ton is not limited to SCAtt-man attestation. For instance, there are
smartphones for privacy-aware users that feature a hardware kill
switch to deactivate Wi-Fi and radio communication [16, 54, 56].
Keep in mind that research found that even encrypted traffic of
IoT devices can be used to monitor actions [3]. As discussed earlier,
users are privacy-sensitive about devices that process speech and
pictures, therefore such a button would be beneficial to give users
control over the device. Many smart speakers already feature a
button to mute the microphone [40].
Software-based locking. We limit the coommunication of the
attested device by configuring the attested device as a Wi-Fi access
point. The smartphone then connects to this access point and
continuously checks the availability of the attested device to ensure
that the attested device cannot connect to a third party. This
prevents the attested device from connecting to the original Wi-
Fi network. However, some Wi-Fi chips can keep connections
to multiple simultaneous connections. For example, the ESP32
supports a combined ‘station and access point’ mode, which allows
the ESP32 to open a Wi-Fi access point while being connected
to another Wi-Fi network [26, 45]. But this is limited to the
same channel as the radio can only listen to a single channel.
Consequently, if the verifier maintains a continuous connection
to the attested device on a channel different from the regular Wi-
Fi connection (i.e., the connection to the Internet) of the attested
device, Internet access of this device is effectively prohibited.

Summing up, the nonces that initiate the attestation, as well
as the attestation reports, are transmitted via audio between the
attested device and the verifier. The attested device is disconnected
from the Internet during attestation to prevent communication
with the attacker. The attestation function is designed such that the
execution cannot be accelerated without altering the hardware. In
Section 6 we show how we combined these techniques into a secure
attestation scheme and implemented them into a smart speaker.

5.4 Attestation Without Human Interaction
SCAtt-man was primarily designed to address attestation in IoT
home installations allowing end-users to verify the integrity and
trustworthiness of their devices. By design, SCAtt-man requires the

229

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Sebastian Surminski, Christian Niesler, Sebastian Linsner, Lucas Davi, & Christian Reuter

user to start and observe the attestation process. But SCAtt-man
attestation can also be adapted to work without human interaction.
To do so, (1) the manual steps need to be automatized, and (2) the
verifier app that currently runs on the user’s smartphone needs
to be replaced. For example, the button to trigger the attestation
could be replaced by a timer automatically starting the attestation.
The attestation could be performed either by a dedicated trusted
attestation device or another nearby smart speaker. These devices
could implement a mutual attestation protocol using our proposed
sound side-channel.

6 IMPLEMENTATION
In this section, we describe the implementation of the key compo-
nents of SCAtt-man. We developed a smart speaker that supports
SCAtt-man attestation to verify both the program code as well as
configuration data, and an Android application that implements the
verifier and guides the user through the attestation process. We ex-
plain in detail the attestation functionality and the data-over-sound
protocol. Furthermore, we show how the user experiences the attes-
tation process. In Section 7, we verify the attestation functionality
and show that SCAtt-man can detect compromises. Furthermore,
we evaluate the reliability of the data-over-sound transmissions.

6.1 Smart Speaker
To implement the smart speaker, we used an M5Stack ATOM Echo
module1 that combines the popular ESP32 microcontroller with
an integrated microphone, a speaker, a button, and a configurable
RGB status LED. The ESP32 microcontroller is deployed in various
IoT devices [21], it features a dual-core processor, and a Wi-Fi
module [22]. On this platform, using the popular FreeRTOS [29],
we integrated basic smart speaker functionality, so recording
voice commands, sending them to a cloud service, as well as
receiving and playing back the response via the integrated speaker.
Note that the usage of FreeRTOS or other operating systems is
not mandatory to integrate SCAtt-man, as no complex process
structures or scheduling are required. When the button is pressed,
the smart speaker records the voice command and directly streams
the voice command via an HTTP connection to a speech-to-text
cloud service2. This service determines the spoken text from the
recorded sound and sends it back to the smart speaker. The smart
speaker then processes the command. Using the text-to-speech
functionality of the IBM Watson Rest-API3, the voice assistant
can convert any text to spoken word. The speech assistant sends a
string and receives wave audio, which is played back later. A similar
operating mode as in standard commercial voice assistants. The
current status of the smart speaker is indicated by the color of the
status LED, allowing the user to always check the current execution
mode of the smart speaker, for example, recording, speaking, or the
current step within the attestation process.

6.2 Attestation Functionality
With a long button press, the smart speaker switches to attestation
mode, which is confirmed by a red LED light. In attestation mode,

1https://docs.m5stack.com/en/atom/atomecho
2https://fanyi-api.baidu.com/
3https://www.ibm.com/cloud/watson-speech-to-text

the ESP32 microcontroller switches from WiFi-Station mode to
Wi-Fi access point mode. The verifier application then connects to
the access point of the ESP32. The connection of the smartphone
on a different radio channel, other than the home Wi-Fi network,
disables the ESP32’s capability to maintain an Internet connection
during attestation. Once the smartphone connects to the access
point, a sound listener is started, which receives the nonce from the
smartphone. The received nonce is then passed to the attestation
process, which computes the attestation report. The attestation
report is then transmitted back to the smartphone. Lastly, the
ESP32 switches back to the WiFi-Station mode and connects
to the Internet to resume normal operation. For the attestation
process, we use a hardware-accelerated SHA-256 for hashing. SHA-
256 is a Merkle–Damgård [42] construction [53], that follows a
strictly sequential process: Each hash block is used as input for
the subsequent block. Therefore, the hashing process cannot be
parallelized. Our attestation covers all code and data sections of
the ESP32. The hashing is initialized by the received nonce. Since
the RAM of the ESP32 cannot fit the entire code and data space,
we split the code data and partitions into blocks of 256 B each.
Other block sizes are possible but will lead to different attestation
runtimes. We use the hash of each block as input for the next one,
thus different block sizes will yield different hashes. We loop the
hashing of the entire memory of the ESP32 to achieve a suitable
attestation runtime. Finally, the resulting hash is transmitted to the
smartphone, and we resume all suspended tasks.

6.3 Data-Over-Sound
As explained in Section 5, we use a short-range side-channel for
the attestation process. This allows the user in proximity to the
IoT device, i.e., the smart speaker, to perform remote attestation
without the risk of a remote attacker hijacking the communication
channel. In fact, the attestation can be performed on an IoT de-
vice with network connections completely turned off. For example,
such a short-range side-channel would be sound. In addition, this
side-channel is perceptible by users. Only devices in short physical
proximity (e.g., the same room) can interfere with the communica-
tion. In order to transmit data between the smartphone application
and the smart speaker, we implemented a data-over-sound protocol
based on SoniTalk [73, 74]. We introduced the following changes to
the SoniTalk protocol to adapt it to the requirements for software-
based attestation. (1) We introduced a fixed message length, (2)
reduced the number of frequencies to increase reliability, and (3)
removed the transmission of inverted message blocks. We have
chosen the fixed message length of 32 bit, as it corresponds to the
chosen length of the transmitted data (i.e., nonces and hashes). A
single message is split into eight blocks (𝑚 = 8) each with a length
of 4 bit (𝑛 = 4) each. Those 𝑛 bits are encoded by the presence of a
corresponding carrier frequency. We reduced the number of carrier
frequencies to four since we implemented the entire attestation
process on a low-end device (ATOM Echo) with low-quality sensors
(speaker and microphone). A reduced number of carrier frequen-
cies makes the transmission process more robust. This is crucial for
software-based attestation, as the user cannot distinguish between
a failed attestation due to a transmission error and a real compro-
mise. In order to avoid attestation ahead of time, we completely

230

https://docs.m5stack.com/en/atom/atomecho
https://fanyi-api.baidu.com/
https://www.ibm.com/cloud/watson-speech-to-text

SCAtt-man: Side-Channel-Based Remote Attestation for Embedded Devices that Users Understand CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

Time

MS M0 M1 M2 M3

1 1

1

1 1

11

1

1 11

11

0

0

0

0

0

0

0

d p

b0: f0=1010Hz

b1: f1=1210Hz

b2: f2=1410Hz

b3: f3=1610Hz

Δf

Fr
eq
ue
nc
y

Figure 2: Transmitting 01011111 11101001 via data-over-sound (DOS).

removed the invertedmessage blocks. Hence, an attacker is required
to wait until the data transmission is finished. As our evaluation
in Section 7 shows, our chosen protocol parameters allow reliable
communication such that the redundant information (i.e., inverted
message blocks) is not needed. Each message consists of one start
block𝑀𝑆 , followed by𝑚 message blocks𝑀 . Through an empirical
study as shown in Section 7.2, we set the transmission time of a
message block to 240ms. Thus, the transmission of a message takes
9 · 240ms = 2,160ms. The generic data transmission process of our
protocol is visualized in Figure 2. We use four carrier frequencies.
The presence of a carrier frequency indicates a bit value of 1, and
the absence of a frequency indicates a bit value of 0. The message
blocks are transmitted in sequence. The message block is always
present for the time span of 𝑑 = 240ms. Figure 2 shows also an
optional pause 𝑝 , between message blocks, which has been set to
zero in our implementation.

Data-Over-Sound on the ESP32 In contrast to the implementation
of a data-over-sound protocol on a smartphone, implementation on
a resource-constraint device such as the ESP32 is more challenging.
Typical commercial smart-speakers like Alexa4, Google Nest5,
or Apple Homepod6 offer more specialized audio hardware and
resources. However, by implementing data-over-sound on the
ESP32, generic and popular IoT hardware, we show the feasibility
of our attestation scheme for a broader range of devices. Sending
data via the data-over-sound protocol is straightforward as the
ESP32 can encode data on-the-fly. This process can be implemented
similarly to the sending process on the smartphone application.
However, the receiving component on the ESP32 is challenging
due to resource constraints, especially memory constraints on the
device. For example, recording and storing large sound blocks is
infeasible. Furthermore, the ESP32 provides only a limited number
of hardware-accelerated fast Fourier transform (FFT) functions. We
solved this challenge by analyzing only the subframes (fraction
of 32ms) of each transmitted tone. We also limited the number
of frequencies and separated those frequencies by at least 100Hz.
Therefore, the FTT can detect the active frequencies in each tone
more easily. Those optimizations to the SoniTalk protocol enable
reliable data transmission over audio on resource-constraint devices
such as the ESP32.

4https://www.amazon.com/smart-home-devices/b?node=9818047011
5https://store.google.com/product/nest_audio
6https://www.apple.com/de/homepod-mini/

6.4 Verifier App
We have implemented the verifier as a user-friendly Android
application. Since smartphones typically feature a good quality
microphone and speaker, they are well suited to communicate
with the IoT device over the sound side-channel. Furthermore, it
offers a familiar and well-known interface for the user. The verifier
application implements a sending and receiving module according
to the used data-over-sound protocol. The sending module has
two main components: The Encoder is responsible for splitting
the message (fixed length of 32 bit) into message blocks (each
4 bit). The ToneGenerator generates the sounds for each message
block. The sound is generated by resampling the active frequencies.
Resampling is conducted using a high-resolution sinus lookup
table. Afterward, the active frequencies are stacked by adding the
sampled values. To avoid clipping in the audio playback, the stacked
tone is normalized to a common gain. We based the components
for receiving module on the Android Audio Sample Project7. The
Recorder component records and stores sound. The application
needs about 60ms to record, which yields four samples per interval.
Each tone is played for 240ms on the sending side. After recording
the audio samples, we perform a fast Fourier transform (FFT)
with the three components AudioCalculator, FrequencyCalculator
and RealDoubleFFT. The Fast Fourier transform (FFT) yields the
frequencies from which the sound is composed. After the frequency
decomposition, the Decoder can determine the start block and
convert each message block to 4 bit integers. In order to properly
receive messages over sound, the recording of message blocks must
be synchronized with the playback of the message. This is done
using the start block𝑀𝑆 .

6.5 Usage Process
To assure that the app is usable for most users, the implementation
process followed the guidelines from existing literature [8, 44, 55].
To use the screen space efficiently, the user is guided through the
attestation process in several steps. Each step describes a single
task in large font size with an additional picture or icon to aid
the user’s understanding and lower the threshold to use the app.
The process is depicted in Figure 3 with screenshots. Furthermore,
we provide a video showing the full functionality8. To start the
attestation, the user opens the attestation app. (1) The app shows
a welcome screen explaining the functionality. The user presses
‘Start attestation’ to start the attestation. (2) The app asks the
user to press the button on the smart speaker for 3 s. The status
LED on the smart speaker changes to red to indicate the start of
the attestation process. Now, the attested device starts an access
point. (3) The app asks the user to connect the smartphone with
the newly started Wi-Fi access point of the smart speaker. As
soon as the smartphone is connected, the status LED of the smart
speaker switches to green. In the background, the attestation app
now checks the continuous connectivity with the smart speaker.
(4) With a click on ‘Run attestation’ the user starts the attestation
process. The smartphone sends the nonce via sound to the attested
device. The attested device receives this nonce and then runs the
attestation function. The result is sent via sound to the smartphone.

7https://github.com/lucns/Android-Audio-Sample
8https://youtu.be/HEbm7crMCU8

231

https://www.amazon.com/smart-home-devices/b?node=9818047011
https://store.google.com/product/nest_audio
https://www.apple.com/de/homepod-mini/
https://github.com/lucns/Android-Audio-Sample
https://youtu.be/HEbm7crMCU8

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Sebastian Surminski, Christian Niesler, Sebastian Linsner, Lucas Davi, & Christian Reuter

Open app Connect smartphone
to access point Run attestation

Attestation
successful

Start access point
Wi-Fi disconnection

Timeout

Incorrect hash

1 2 3 4

6
5

Figure 3: The usage of SCAtt-man. The user is guided through the attestation process. In the end, the smartphone displays whether the attested
device was verified successfully or if the attestation failed.

The smartphone app receives this response and then compares
this attestation response with the benign state. Furthermore, the
app checks the time until the result is received. (5) If the response
contains the correct measurements and arrived within the time
threshold 𝑡𝑠 , then the green screen is shown. (6) If the response took
longer than a threshold value 𝑡𝑠 , the app shows an error message
on a red screen. An error message is also shown if the result of the
attestation function does not match the expected value or if the
Wi-Fi connection to the smart speaker was interrupted.

If the attestation fails, the user can restart the attestation function.
Attestation failure may be caused by transmission error, loss of Wi-
Fi-connection, or actual compromise. The error message explains
the reason for the failure. Furthermore, since the communication
is perceived by the user, the user can detect such distortions and
restart the attestation process. In case of transmission errors or
connection problems, users just need to repeat the attestation
process. However, in our experiments, transmission errors and
connection problems rarely occurred as we show in Sections 7.2 and
7.3. Repeated failures indicate a real compromise. The app should
then guide the user through a restoration process, for example, by
resetting the device to resolve a compromise.

7 EVALUATION
In this section, we show that SCAtt-man is capable of performing a
secure and reliable attestation. Furthermore, we explain how we
determined the parameters for the data-over-sound protocol. In
Section 7.3 we show in a case study how SCAtt-man can detect real-
world attacks. We discuss the security of SCAtt-man attestation in
detail in Section 7.4.

7.1 Runtime of Attestation Function
The runtime of the attestation function is the main security
feature of SCAtt-man attestation, as elaborated in Section 5. We
performed a measurement study on our implementation of SCAtt-
man on the smart speaker to obtain the runtime of the attestation
function. These measurements are crucial in determining the timing
thresholds for software-based attestation. The attestation function
can be tuned to adapt its runtime to requirements by changing

Table 1: Runtime of attestation function depending on the number
of repetitions. All measurements are taken in ms.

Rep. Min./Max. Median Average Var. SD
1 812.4/812.9 812.433 812.453 0.006 0.080
2 1624.8/1624.9 1624.927 1624.898 0.003 0.051
3 2437.2/2437.4 2437.372 2437.347 0.005 0.070
4 3249.6/3249.9 3249.769 3249.800 0.016 0.126
5 4062.0/4062.4 4062.152 4062.247 0.023 0.153
6 4874.4/4874.0 4874.559 4874.737 0.058 0.241
7 5686.9/5687.6 5686.980 5687.108 0.045 0.212
8 6499.2/6499.8 6499.398 6499.569 0.066 0.256
9 7311.7/7312.4 7311.824 7312.061 0.113 0.336
10 8124.0/8124.7 8124.249 8124.401 0.074 0.272

the number of iterations. Each additional iteration increases the
runtime of the function. Due to the construction of the attestation
function the implementation cannot be parallelized. More details
on the implementation of the attestation function can be found in
Section 6. We conducted an extensive measurement study on the
runtime of the attestation function and report the results in Table 1.
We tested one to ten repetitions, yielding an average runtime of 0.81
to 8.1 s; repeating each test 158 times. Our measurement shows that
the variance of the runtime of the attestation function is marginal,
with a maximum at nine repetitions and a variance of 113 µs. This
experiment shows that the attestation function is well-suited for
performing software-based attestation.

7.2 Designing a Reliable Audio Protocol
As alluded to earlier, the communication protocol must allow
reliable communication between the prover and the verifier. When
the attestation fails, the user cannot determine the cause of this
failure: The user cannot distinguish between a failure due to a
compromised device and a failure due to a communication error.
Thus, it is important to carefully develop the audio protocol such
that it allows reliable attestation. The data-over-sound protocol
has many parameters that have to be tuned to fit this use case. We
conducted an extensive study to determine the optimal values for

232

SCAtt-man: Side-Channel-Based Remote Attestation for Embedded Devices that Users Understand CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

these parameters. In particular, these parameters are (1) the block
length, i.e., the duration of each tone, (2) the base frequency, i.e., the
frequency of each tone, and (3) the frequency separation, i.e., the
difference in the frequency between simultaneously transmitted
bits. Based on our experiences from the implementation, we limited
the state space to a block size of 100–600ms (steps of 100ms)
and a frequency separation of 100–800Hz (steps of 100Hz). We
observed that a slight offset of the base frequency by 10Hz improves
the transmission quality mainly because it reduces conflicting
overtones. Therefore, we chose a base frequency of 510–2,010Hz
(steps of 250Hz). In this test, the smart speaker sends random
messages to the smartphone, as this is the most tricky part due
to the speaker of the ATOM Echo. As receiving device we used
a Xiaomi Redmi Note 10. We found that transmissions work best
with a block length of 240ms. We checked the transmission quality
between the smartphone and the smart speaker in extensive tests.
During our experiments, we found the speaker of the ATOM
Echo to be a limiting factor. So we replaced the speaker of the
ATOM Echo with a larger model to increase the reliability of the
transmission. Note that we did not change any hardware on the
microcontroller. The amplifier, microphone, and processor stayed
the same. Using the larger speaker, we yielded a success rate of 100 %
for the transmission between the smart speaker and the verifier.
The following evaluation is conducted using this larger speaker.
All of our tests were conducted in a typical office environment. We
found that noise disturbances, such as people speaking or traffic
noises through the window, did not influence our processes. We
attribute this to the use of specific frequencies. We conclude that
our attestation method works reliably in typical home and office
environments.

7.3 End-to-End Example
We performed a case study to evaluate the full functionality of
SCAtt-man. We used a Google Pixel 3 to run the verifier app and
the ATOM Echo with the improved speaker. To show how SCAtt-
man detects real-world compromises, we integrated a vulnerable
web interface into the smart speaker that allows its configuration.
This is a typical vulnerability, as the most common weaknesses
in IoT devices are weak, guessable, or hard-coded passwords and
insecure network interfaces and services [51]. The web interface
allows one to change the URL for the speech-to-text service, that
is, the service to which the user’s voice commands are being sent.
This poses a serious risk to the user’s security and privacy. An
attacker-controlled speech-to-text service allows recording a user’s
voice commands or arbitrarily altering the commands that the
smart speaker executes. This URL is stored in the NVS partition,
where all the smart speaker configuration data is kept. As soon
as the user starts a speech command, this information is read
by the HTTP client that performs the communication with the
speech-to-text service. However, as soon as the URL is updated, this
changes the content of the NVS partition. Hence, this is detected
by the attestation. To check this, after altering the URL via the
web interface, we start an attestation run which correctly detects
the modifications. To show the reliability of this attestation, we
manually repeated the attestation multiple times with the benign
and the compromised device. In total, we performed the attestation

50 times on the benign device and ten times on the compromised
device. All benign and compromised states were correctly identified.
There were no false positives or negatives.

7.4 Security Discussion
A secure software-based attestation scheme requires careful design
and implementation. In the following, we discuss typical attacks on
software-based attestation and explain how SCAtt-man addresses
these.
TOCTOU. Existing attestation schemes are vulnerable to Time-
of-Check/Time-of-Use (TOCTOU) attacks [63]. The key idea of
this attack is to restore a benign state before the next attestation
run, allowing the attacker to stay undetected. However, in SCAtt-
man, the attacker cannot predict the attestation. The user randomly
triggers attestation runs through physical interaction (for example,
a button press). Since the attacker cannot predict the user’s
attestation request, the attacker cannot restore the benign state
in time. Thus, the malicious behavior will be detected over time.
Network delays. For software-based attestation, it is crucial
that the transmission time can be predicted precisely [61]. As
such, software-based attestation is usually limited to one-hop
settings [7]. Short-distance communication over light or sound has
a predictable transmission time due to the direct communication
from device to device. Users are able to observe the transmission
and identify disturbances, e.g., background noise that disturbed the
transmission.
Offloading attacks. As communication happens directly over
a side channel such as light or sound, there is no need for a
remote network connection. In fact, SCAtt-man implements a
network disconnection during attestation, effectively preventing
any communication to other devices. Consequently, attestation
reports cannot be forged.
Compression attacks. A compression attack uses a compression
mechanism to free up memory on the attested device, which is
not covered by the attestation and may store malicious code [61].
The attacker can perform this attack on-the-fly, compressing and
decompressing memory segments on demand to avoid detection.
We adopted several techniques from previous work [67]. First, we
start the attestation process at a random location, derived from
the nonce. Second, we fill the empty memory with random data to
make compression itself difficult. Third, writing data on embedded
devices has a high latency since write operations need to rewrite
entire pages (sections) of memory. Those hardware limitations are
described in previous work [67]. Furthermore, the ESP32 and most
IoT devices offer hardware acceleration for hashing. Due to the high
speed of hashing (using hardware acceleration) and the hardware
restrictions on write operations (rewriting flash pages is slow),
compression attacks become infeasible for the attacker.
Memory manipulation. In a memory manipulation attack, the
attacker uses unmonitored memory such as the RAM to avoid
detection. However, due to already existing countermeasures and
embedded hardware characteristics, this kind of attack has often
become infeasible on embedded devices. For example, RAM is
typically marked as non-executable memory [23], so no code can be
executed from this memory region. Furthermore, manipulating the
memory layout, such as the partition table is highly challenging [25].

233

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Sebastian Surminski, Christian Niesler, Sebastian Linsner, Lucas Davi, & Christian Reuter

Table 2: Responses to the questionnaire on SCAtt-man. Answers
range from (1) Completely disagree to (6) Completely agree.

Question Avg. SD
Q1 I used smart speakers before. 2.80 2.11
Q2 I trust IoT devices like smart speakers. 2.85 1.42
Q3 I trust my smartphone. 3.95 1.15
Q4 Additional security measures can increase my trust in IoT

devices.
5.40 1.05

Q5 I believe that attestation can detect manipulations in devices. 4.80 1.36
Q6 The audio communication increases my trust in attestation. 4.40 1.10
Q7 When an IoT device has an integrated attestation method I

would use this functionality.
5.15 1.50

The ESP32 enforces several preconditions to change the existing
memory layout. First, SPI Dangerous Write must be explicitly
enabled. Second, such changes are typically implemented by OTA
(Over-the-Air Update) [24]. This would require a full reboot, and
in addition it would change the stored partition information [25].
Thus, the user-invoked attestation will fail.
Attacks on the attestation mechanism. Since network com-
munication is completely turned off during attestation only direct
attacks on the attestation protocol are left. As the attacker can only
start attestation once the nonce is received, the critical point is the
time span between the reception of the last message containing the
nonce and the beginning of the transmission of the response to the
verifier. A malicious actor will likely try to speed up the recognition
of the last message to gain some time for malicious code execution,
as the attestation function by itself cannot be accelerated: The at-
testation function consists of a non-parallelizable hashing function
with an optimized or even hardware-accelerated implementation.
In order to avoid speedup of the nonce recognition, we have con-
sidered the minimal recording and processing time to receive the
complete nonce. Based on those recording and processing times
we carefully set the threshold for attestation. As a consequence,
there is no usable time gap in the data-over-sound transmission.
Thresholds need to be adjusted on a per-device basis, based on the
available resources and sound processing capabilities of the device.

7.5 User Study
To ensure that the usability of SCAtt-man is sufficient we conducted
a qualitative user study consisting of two parts. First, the users were
asked to interact with the SCAtt-man smart speaker and perform
the attestation process using a Pixel 3 smartphone. Second, the users
completed a set of questionnaires. We recruited 20 participants
among company personnel and university students for the study,
of which 6 identified as female and 14 as male. The age of the
participants ranged from 20 to 65 years with a mean of 37.7. All of
them participated voluntarily and no compensation was paid. Each
participant was informed about the study objective prior to the
study and signed an informed consent that explained which data
was collected and how it would be processed. Literature indicates
that 20 participants are sufficient to identify at least 95% (mean
98.4%) of all usability problems [27]. Our results did not show a large
deviation between users’ responses, indicating that saturation was
reached. The lack of new input from users signals a sufficient sample
size for qualitative studies [11]. Since all participants were recruited
among company staff and on the university campus, participants
were also tasked with filling out the ATI-Scale [28] questionnaire, in

order to make this sample comparable to other studies. The results
show that a mean of 4.43 was reached with a standard error of the
mean of 1.01 and a Cronbach’s alpha of 0.8. To assess the previous
knowledge of the users regarding smart home technology, a set of
seven questions was included in the questionnaire. Table 2 shows
the questions and the answers. Participants were asked to indicate
the degree to which they agree/disagree with the statements on
a scale ranging from (1) Completely disagree and (6) Completely
agree.

The results showed that more than half of the participants
had little or no experience with smart speakers (mean 2.8) and
that they trusted these devices less than their smartphones (2.85
compared to 3.95). Trust in smart speakers can be enhanced using
additional security techniques (5.4). The participants stated that
attestation techniques detect manipulations in devices (4.8). In
particular, the users think that the observable audio communication
further increases the trust in the attestation scheme (4.4). When
an IoT device would have an attestation function, the participants
would use it (5.15). During the interaction with SCAtt-man the
users should speak out their thoughts according to the ‘think-aloud’
method to identify possible problems in the usage process. Our
study demonstrates that the participants considered our app highly
usable. However, users tend to always click the button, ignoring the
task (i.e., pressing the button on the smart speaker, connecting the
Wi-Fi), resulting in a failed attestation. Furthermore, we observed
that manually changing the Wi-Fi configuration is tricky due to
the many vendor-specific implementations. To further increase the
usability of the SCAtt-man app, we plan to integrate checks that
prevent continuation before completing the respective task. In order
to access the usability of the system, the UEQ-S questionnaire [59]
was filled out after the hands-on experiment. Our results show that
the usability of the system was rated positively: the overall score
was 1.719, the pragmatic quality was rated 1.875, and the hedonic
quality with 1.563. Since all three values lie above the threshold of
0.8, the usability of SCAtt-man was evaluated positively. Summing
up, we can state that SCAtt-man has both good usability and users
trust the attestation. Furthermore, if devices featured an attestation
method users would use it.

8 RELATEDWORK
In Section 2.1, we discussed approaches for software-based attesta-
tion. In this section, we will focus on alternative approaches that use
hardware features to obtain a trustworthy self-measurement of an
untrusted device. One approach is to use trusted computing compo-
nents like Intel SGX or ARM TrustZone [6, 15]. These technologies
provide a trusted execution environment (TEE), that is separated
from the untrusted attested device. Many off-the-shelf processors
used in servers, PCs, and smartphones feature such TEEs. C-FLAT
uses TrustZone to allow control-flow attestation, thus monitoring
the execution of the program flow, detecting deviations like return-
oriented programming attacks [1]. OAT introduces the concept of
operation execution integrity, covering both control-flow and criti-
cal data in the attestation [66]. However, due to cost reasons, such
trusted computing components are often not available in low-end
and embedded devices. Hybrid attestation schemes schemes rely on
a hardware/software co-design that provides hardware extensions

234

SCAtt-man: Side-Channel-Based Remote Attestation for Embedded Devices that Users Understand CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA

to allow secure remote attestation. These hardware extensions can
provide a root of trust, in contrast to pure software-based solutions
where such a root of trust is missing. SMART is one of the first
hybrid attestation schemes, that uses custom hardware extensions
to protect cryptographic keys, while the attestation itself is run
in software [20]. A major limitation of attestation schemes such
as SMART and SANCUS is that the attestation function cannot be
interrupted during execution [20, 46]. TrustLite in contrast enables
interrupt handling during the attestation, so that an attestation
run is not aborted on interrupt [38]. TyTAN extends this to even
allow timing-critical realtime operations [9]. VRASED is a formally
verified hybrid attestation scheme [47]. All of these hybrid attes-
tation schemes perform static attestation, i.e., check the memory
content of the attested device. Hybrid attestation has also been
extended to cover dynamic properties. APEX is able to attest that
specific code has been executed [48]. TinyCFA provides control-
flow attestation [50]. DIALED extends this work to also monitor
data flow, allowing to detect data-only attacks [49]. All these sys-
tems are based on the VRASED framework. While these approaches
require a few hardware extensions, attestation schemes introducing
a more complex hardware design have been also proposed. LO-FAT
performs control-flow attestation completely in hardware. This
approach does not require instrumentation of the attested software
and has less overhead in contrast to other control-flow attesta-
tion schemes like C-FLAT [18]. LiteHAX is a hardware-assisted
attestation scheme that does not only detect control-flow but also
data-only attacks [17].

9 CONCLUSION AND SUMMARY
In this paper we presented SCAtt-man, a solution to perform secure
software-based attestation on IoT devices. SCAtt-man solves the
inherent problem of missing device authentication in software-
based attestation by using user-observable side channels. This
approach allows the user to identify the attested device. We
implemented SCAtt-man into a smart speaker and developed an app
for Android smartphones to perform the attestation. The Android
app guides the user through the attestation process. Our evaluation
shows that SCAtt-man can reliably perform attestation without
failures. In a full end-to-end example, we showed how SCAtt-man
can be used to detect a compromise through a typical real-world
vulnerability. In a user study, we found not only that SCAtt-man
has a good usability, but also that people trust attestation solutions
in general and would use them if their devices had such a feature.
This makes novel attestation solutions for customer IoT devices a
worthwhile research target.

ACKNOWLEDGMENTS
Part of this research was conducted within a student project group
at the University of Duisburg-Essen. We thank the participants
Roman Heger, Daniel Max, Tai Nguyen Nhan, Niklas Pfützenreuter,
Marvin Strauß, and Matteo Viefhaus for their great work.

This work has been partially funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation)—SFB 1119
(CROSSING)—236615297 within project S2 and was supported
by the DFG Priority Program SPP 2253 Nano Security (Project
RAINCOAT—Number: 440059533).

REFERENCES
[1] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew

Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. C-FLAT: Control-Flow
Attestation for Embedded Systems Software. In ACM Conference on Computer
and Communications Security (CCS).

[2] Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza
Sadeghi, and Matthias Schunter. 2019. DIAT: Data Integrity Attestation for
Resilient Collaboration of Autonomous Systems. In 26th Annual Network and
Distributed System Security Symposium (NDSS).

[3] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus
Miettinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and Selcuk Uluagac.
2020. Peek-a-boo: I see your smart home activities, even encrypted!. In 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks.

[4] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK:
Security Evaluation of Home-Based IoT Deployments. In IEEE Symposium on
Security and Privacy (SP).

[5] Omar Alrawi, Charles Lever, Kevin Valakuzhy, Ryan Court, Kevin Z. Snow, Fabian
Monrose, and Manos Antonakakis. 2021. The Circle Of Life: A Large-Scale Study
of The IoT Malware Lifecycle. In 30th USENIX Security Symposium.

[6] ARM Limited. 2009. Security Technology Building a Secure System Using
Trustzone Technology (White Paper).

[7] Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen Schulz, and Christian Wachs-
mann. 2013. A security framework for the analysis and design of software
attestation. In ACM Conference on Computer and Communications Security (CCS).

[8] Amani Braham, Félix Buendía, Maha Khemaja, and Faiez Gargouri. 2021. User
interface design patterns and ontology models for adaptive mobile applications.
Personal and Ubiquitous Computing (2021).

[9] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian Wachs-
mann, and Patrick Koeberl. 2015. TyTAN: Tiny trust anchor for tiny devices. In
52nd Annual Design Automation Conference (DAC).

[10] Business Wire. 2021. Strategy Analytics: Global Smart Speaker
Sales Cross 150 Million Units for 2020 Following Robust Q4 Demand.
https://www.businesswire.com/news/home/20210303005852/en/Strategy-
Analytics-Global-Smart-Speaker-Sales-Cross-150-Million-Units-for-2020-
Following-Robust-Q4-Demand

[11] Kelly Caine. 2016. Local Standards for Sample Size at CHI. In CHI Conference on
Human Factors in Computing Systems.

[12] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Soriente.
2009. On the difficulty of software-based attestation of embedded devices. In
ACM Conference on Computer and Communications Security (CCS).

[13] Long Cheng, Christin Wilson, Song Liao, Jeffrey Young, Daniel Dong, and
Hongxin Hu. 2020. Dangerous skills got certified: Measuring the trustworthiness
of skill certification in voice personal assistant platforms. In ACM Conference on
Computer and Communications Security (CCS).

[14] George Coker, Joshua Guttman, Peter Loscocco, Amy Herzog, Jonathan Millen,
Brian O’Hanlon, John Ramsdell, Ariel Segall, Justin Sheehy, and Brian Sniffen.
2011. Principles of Remote Attestation. International Journal of Information
Security 10, 2 (2011).

[15] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint archive (2016). http://eprint.iacr.org/2016/086

[16] Corbin Davenport. 2020. This smartphone has physical kill switches for its
cameras, microphone, data, Bluetooth, and Wi-Fi. Retrieved 2022-03-07
from https://www.androidpolice.com/2020/08/22/this-smartphone-has-physical-
kill-switches-for-its-cameras-microphone-data-bluetooth-and-wi-fi/

[17] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza Sadeghi. 2018.
LiteHAX: Lightweight Hardware-assisted Attestation of Program Execution. In
International Conference on Computer-Aided Design (ICCAD).

[18] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas
Davi, Patrick Koeberl, N Asokan, and Ahmad-Reza Sadeghi. 2017. LO-FAT:
Low-Overhead Control Flow ATtestation in Hardware. In 54th Annual Design
Automation Conference (DAC).

[19] Jide S Edu, Jose M Such, and Guillermo Suarez-Tangil. 2020. Smart Home Personal
Assistants: A Security and Privacy Review. ACM Computing Surveys (CSUR) 53,
6 (2020).

[20] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. 2012.
SMART: Secure and Minimal Architecture for (Establishing Dynamic) Root of
Trust. In 19th Annual Network and Distributed System Security Symposium (NDSS).

[21] Espressif Systems. 2018. Espressif Achieves the 100-Million Target for IoT Chip
Shipments. Retrieved 2022-03-07 from https://www.espressif.com/en/news/
Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments

[22] Espressif Systems. 2021. ESP32 Series Datasheet. Retrieved 2022-03-
07 from https://www.espressif.com/sites/default/files/documentation/esp32_
datasheet_en.pdf

[23] Espressif Systems. 2021. Memory Capabilities. Retrieved 2022-03-30
from https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/
system/mem_alloc.html

[24] Espressif Systems. 2021. Over The Air Updates (OTA). Retrieved 2022-03-30

235

https://www.businesswire.com/news/home/20210303005852/en/Strategy-Analytics-Global-Smart-Speaker-Sales-Cross-150-Million-Units-for-2020-Following-Robust-Q4-Demand
https://www.businesswire.com/news/home/20210303005852/en/Strategy-Analytics-Global-Smart-Speaker-Sales-Cross-150-Million-Units-for-2020-Following-Robust-Q4-Demand
https://www.businesswire.com/news/home/20210303005852/en/Strategy-Analytics-Global-Smart-Speaker-Sales-Cross-150-Million-Units-for-2020-Following-Robust-Q4-Demand
http://eprint.iacr.org/2016/086
https://www.androidpolice.com/2020/08/22/this-smartphone-has-physical-kill-switches-for-its-cameras-microphone-data-bluetooth-and-wi-fi/
https://www.androidpolice.com/2020/08/22/this-smartphone-has-physical-kill-switches-for-its-cameras-microphone-data-bluetooth-and-wi-fi/
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/mem_alloc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/mem_alloc.html

CODASPY ’23, April 24–26, 2023, Charlotte, NC, USA Sebastian Surminski, Christian Niesler, Sebastian Linsner, Lucas Davi, & Christian Reuter

from https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/
system/ota.html

[25] Espressif Systems. 2022. Partition Tables. Retrieved 2022-03-17 from https://docs.
espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-tables.html

[26] Espressif Systems. 2022. Wi-Fi Driver - ESP32 - ESP-IDF Programming Guide
latest documentation. Retrieved 2022-03-16 from https://docs.espressif.com/
projects/esp-idf/en/latest/esp32/api-guides/wifi.html

[27] Laura Faulkner. 2003. Beyond the five-user assumption: Benefits of increased
sample sizes in usability testing. Behavior Research Methods, Instruments, &
Computers 35, 3 (2003).

[28] Thomas Franke, Christiane Attig, and Daniel Wessel. 2019. A Personal Resource
for Technology Interaction: Development and Validation of the Affinity for
Technology Interaction (ATI) Scale. International Journal of Human–Computer
Interaction 35, 6 (2019).

[29] FreeRTOS. 2022. GitHub - FreeRTOS. Retrieved 2022-03-22 from https:
//github.com/FreeRTOS/FreeRTOS/tree/master

[30] Gemalto. 2018. The State of IoT Security. Retrieved 2022-03-07 from https:
//www.infopoint-security.de/media/gemalto-state-of-iot-security-report.pdf

[31] Zhonglei Gu and Yang Liu. 2016. Scalable Group Audio-Based Authentication
Scheme for IoT Devices. In 12th International Conference on Computational
Intelligence and Security (CIS).

[32] Zhixiu Guo, Zijin Lin, Pan Li, and Kai Chen. 2020. SkillExplorer: Understanding
the Behavior of Skills in Large Scale. In 29th USENIX Security Symposium.

[33] Jun Han, Albert Jin Chung, Manal Kumar Sinha, Madhumitha Harishankar, Shijia
Pan, Hae Young Noh, Pei Zhang, and Patrick Tague. 2018. Do You Feel What I
Hear? Enabling Autonomous IoT Device Pairing Using Different Sensor Types.
In IEEE Symposium on Security and Privacy (SP).

[34] Matthew B Hoy. 2018. Alexa, Siri, Cortana, and more: an introduction to voice
assistants. Medical reference services quarterly 37, 1 (2018).

[35] Chongkyung Kil, Emre C Sezer, Ahmed M Azab, Peng Ning, and Xiaolan Zhang.
2009. Remote attestation to dynamic system properties: Towards providing
complete system integrity evidence. In IEEE/IFIP International Conference on
Dependable Systems & Networks (DSN).

[36] Bret Kinsella. 2021. Alexa Skill Counts Surpass 80K in US, Spain Adds the
Most Skills, New Skill Rate Falls Globally. Retrieved 2022-03-16 from https:
//voicebot.ai/2021/01/14/alexa-skill-counts-surpass-80k-in-us-spain-adds-the-
most-skills-new-skill-introduction-rate-continues-to-fall-across-countries/

[37] Bret Kinsella. 2022. Google Assistant Actions Grew Quickly in Several
Languages in 2019, Matched Alexa Growth in English. Retrieved 2022-03-
16 from https://voicebot.ai/2020/01/19/google-assistant-actions-grew-quickly-
in-several-languages-in-2019-match-alexa-growth-in-english/

[38] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.
2014. TrustLite: A security architecture for tiny embedded devices. In Ninth
European Conference on Computer Systems (EuroSys).

[39] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas.
2017. DDoS in the IoT: Mirai and Other Botnets. Computer 50, 7 (2017).

[40] Josephine Lau, Benjamin Zimmerman, and Florian Schaub. 2018. Alexa, Are You
Listening?: Privacy Perceptions, Concerns and Privacy-seeking Behaviors with
Smart Speakers. ACM on Human-Computer Interaction 2, CSCW (2018).

[41] Shijia Mei, Zhihong Liu, Yong Zeng, Lin Yang, and Jian Feng Ma. 2019. Listen!:
Audio-based Smart IoT Device Pairing Protocol. In 19th International Conference
on Communication Technology (ICCT).

[42] Ralph Charles Merkle. 1979. Secrecy, authentication, and public key systems.
Stanford University.

[43] Richard Mitev, Markus Miettinen, and Ahmad-Reza Sadeghi. 2019. Alexa Lied to
Me: Skill-based Man-in-the-Middle Attacks on Virtual Assistants. In ACM Asia
Conference on Computer and Communications Security (AsiaCCS).

[44] Erik G Nilsson. 2009. Design patterns for user interface for mobile applications.
Advances in engineering software 40, 12 (2009).

[45] NodeMCU Documentation. 2022. WiFi Module. Retrieved 2022-03-16 from
https://nodemcu.readthedocs.io/en/release/modules/wifi/

[46] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Her-
rewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank
Piessens. 2013. Sancus: Low-cost Trustworthy Extensible Networked Devices
with a Zero-software Trusted Computing Base. In 22nd USENIX Security Sympo-
sium.

[47] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael
Steiner, and Gene Tsudik. 2019. VRASED: A Verified Hardware/Software Co-
Design for Remote Attestation. In 28th USENIX Security Symposium.

[48] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, and Gene
Tsudik. 2020. APEX: A Verified Architecture for Proofs of Execution on Remote
Devices under Full Software Compromise. In 29th USENIX Security Symposium.

[49] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik. 2021. DIALED:
Data Integrity Attestation for Low-end Embedded Devices. In 58th ACM/IEEE
Design Automation Conference (DAC).

[50] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik. 2021. Tiny-CFA:
Minimalistic Control-Flow Attestation Using Verified Proofs of Execution. In
Design, Automation & Test in Europe Conference & Exhibition (DATE).

[51] OWASP. 2018. Internet of Things (IoT) Top 10 2018. Retrieved 2022-03-07 from
https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf

[52] Bryan Parno, Jonathan M McCune, and Adrian Perrig. 2010. Bootstrapping Trust
in Commodity Computers. In IEEE Symposium on Security and Privacy (SP).

[53] Wouter Penard and Tim van Werkhoven. 2008. On the secure hash algorithm
family. Cryptography in context (2008).

[54] Pine Store ltd. 2022. PinePhone. Retrieved 2022-03-07 from https://pine64.com/
product-category/pinephone/

[55] Lumpapun Punchoojit and Nuttanont Hongwarittorrn. 2017. Usability studies on
mobile user interface design patterns: a systematic literature review. Advances in
Human-Computer Interaction (2017).

[56] Kyle Rankin. 2019. Lockdown Mode on the Librem 5: Beyond Hardware Kill
Switches. Retrieved 2022-03-07 from https://puri.sm/posts/lockdown-mode-on-
the-librem-5-beyond-hardware-kill-switches/

[57] Markus Rothmuller and Sam Barker. 2020. IoT the Internet of Transformation
2020. Retrieved 2022-02-23 from https://www.juniperresearch.com/whitepapers/
iot-the-internet-of-transformation-2020

[58] Nitesh Saxena, J-E Ekberg, Kari Kostiainen, and N Asokan. 2006. Secure device
pairing based on a visual channel. In IEEE Symposium on Security and Privacy
(SP).

[59] Martin Schrepp, Andreas Hinderks, and Jörg Thomaschewski. 2017. Design and
Evaluation of a Short Version of the User Experience Questionnaire (UEQ-S).
International Journal of Interactive Multimedia and Artificial Intelligence (2017).

[60] Dominik Schürmann and Stephan Sigg. 2011. Secure Communication Based on
Ambient Audio. IEEE Transactions on Mobile Computing 12, 2 (2011).

[61] Arvind Seshadri, Adrian Perrig, Leendert Van Doorn, and Pradeep Khosla. 2004.
SWATT: Software-based attestation for embedded devices. In IEEE Symposium
on Security and Privacy (SP). IEEE. https://doi.org/10.1109/SECPRI.2004.1301329

[62] Smiljanic Stasha. 2021. An In-Depth View into Smart Home Statistics. Re-
trieved 2022-02-25 from https://policyadvice.net/insurance/insights/smart-home-
statistics/

[63] Rodrigo Vieira Steiner and Emil Lupu. 2016. Attestation in Wireless Sensor
Networks: A Survey. ACM Computing Surveys (CSUR) 49, 3 (2016).

[64] Rodrigo Vieira Steiner and Emil Lupu. 2019. Towards more practical software-
based attestation. Computer Networks 149 (2019).

[65] Dan Su, Jiqiang Liu, Sencun Zhu, Xiaoyang Wang, and Wei Wang. 2020. "Are
you home alone?" "Yes" Disclosing Security and Privacy Vulnerabilities in Alexa
Skills. arXiv preprint arXiv:2010.10788 (2020).

[66] Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. 2020. OAT: Attesting
Operation Integrity of Embedded Devices. In IEEE Symposium on Security and
Privacy (SP).

[67] Sebastian Surminski, Christian Niesler, Ferdinand Brasser, Lucas Davi, and
Ahmad-Reza Sadeghi. 2021. RealSWATT: Remote Software-based Attestation for
Embedded Devices under Realtime Constraints. In ACM Conference on Computer
and Communications Security (CCS).

[68] Trusted Computing Group. 2019. Trusted Platform Module Library Specification,
Family “2.0”, Level 00, Revision 01.59 – November 2019. Retrieved 2022-03-26 from
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/

[69] Lionel Sujay Vailshery. 2022. Internet of Things (IoT) total annual revenue
worldwide from 2020 to 2030. Retrieved 2023-02-06 from https://www.statista.
com/statistics/1194709/iot-revenue-worldwide/

[70] Minhua Wu, Sankaran Panchapagesan, Ming Sun, Jiacheng Gu, Ryan Thomas,
Shiv Naga Prasad Vitaladevuni, Bjorn Hoffmeister, and Arindam Mandal. 2018.
Monophone-Based Background Modeling for Two-Stage On-Device Wake Word
Detection. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP).

[71] Weitao Xu, Chitra Javali, Girish Revadigar, Chengwen Luo, Neil Bergmann, and
Wen Hu. 2017. Gait-Key: A Gait-Based Shared Secret Key Generation Protocol
for Wearable Devices. ACM Transactions on Sensor Networks (TOSN) 13, 1 (2017).

[72] Eric Zeng, Shrirang Mare, and Franziska Roesner. 2017. End User Security and
Privacy Concerns with Smart Homes. In Thirteenth Symposium on Usable Privacy
and Security (SOUPS 2017).

[73] Matthias Zeppelzauer, Alexis Ringot, and Florian Taurer. 2019. SoniTalk –
an open ultrasonic communication protocol. Retrieved 2022-03-07 from
https://sonitalk.fhstp.ac.at/

[74] Matthias Zeppelzauer, Alexis Ringot, and Florian Taurer. 2022. SoniTalk.
Retrieved 2022-03-07 from https://github.com/fhstp/SoniTalk

[75] Nan Zhang, Xianghang Mi, Xuan Feng, XiaoFeng Wang, Yuan Tian, and Feng
Qian. 2019. Dangerous skills: Understanding and mitigating security risks of
voice-controlled third-party functions on virtual personal assistant systems. In
IEEE Symposium on Security and Privacy (SP).

[76] Shaohu Zhang and Anupam Das. 2021. HandLock: Enabling 2-FA for Smart
Home Voice Assistants using Inaudible Acoustic Signal. In 24th International
Symposium on Research in Attacks, Intrusions and Defenses (RAID).

[77] Serena Zheng, Noah Apthorpe, Marshini Chetty, and Nick Feamster. 2018. User
Perceptions of Smart Home IoT Privacy. ACM on human-computer interaction 2,
CSCW (2018).

236

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-tables.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-tables.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/wifi.html
https://github.com/FreeRTOS/FreeRTOS/tree/master
https://github.com/FreeRTOS/FreeRTOS/tree/master
https://www.infopoint-security.de/media/gemalto-state-of-iot-security-report.pdf
https://www.infopoint-security.de/media/gemalto-state-of-iot-security-report.pdf
https://voicebot.ai/2021/01/14/alexa-skill-counts-surpass-80k-in-us-spain-adds-the-most-skills-new-skill-introduction-rate-continues-to-fall-across-countries/
https://voicebot.ai/2021/01/14/alexa-skill-counts-surpass-80k-in-us-spain-adds-the-most-skills-new-skill-introduction-rate-continues-to-fall-across-countries/
https://voicebot.ai/2021/01/14/alexa-skill-counts-surpass-80k-in-us-spain-adds-the-most-skills-new-skill-introduction-rate-continues-to-fall-across-countries/
https://voicebot.ai/2020/01/19/google-assistant-actions-grew-quickly-in-several-languages-in-2019-match-alexa-growth-in-english/
https://voicebot.ai/2020/01/19/google-assistant-actions-grew-quickly-in-several-languages-in-2019-match-alexa-growth-in-english/
https://nodemcu.readthedocs.io/en/release/modules/wifi/
https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf
https://pine64.com/product-category/pinephone/
https://pine64.com/product-category/pinephone/
https://puri.sm/posts/lockdown-mode-on-the-librem-5-beyond-hardware-kill-switches/
https://puri.sm/posts/lockdown-mode-on-the-librem-5-beyond-hardware-kill-switches/
https://www.juniperresearch.com/whitepapers/iot-the-internet-of-transformation-2020
https://www.juniperresearch.com/whitepapers/iot-the-internet-of-transformation-2020
https://doi.org/10.1109/SECPRI.2004.1301329
https://policyadvice.net/insurance/insights/smart-home-statistics/
https://policyadvice.net/insurance/insights/smart-home-statistics/
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://www.statista.com/statistics/1194709/iot-revenue-worldwide/
https://www.statista.com/statistics/1194709/iot-revenue-worldwide/
https://sonitalk.fhstp.ac.at/
https://github.com/fhstp/SoniTalk

	Abstract
	1 Introduction
	2 Background
	2.1 Software-based Remote Attestation
	2.2 Smart Speakers

	3 Problem Statement & Challenges
	4 Assumptions and Threat Model
	5 Concept of SCAtt-man
	5.1 Audio Protocol
	5.2 Attestation Function
	5.3 Limiting Internet Access
	5.4 Attestation Without Human Interaction

	6 Implementation
	6.1 Smart Speaker
	6.2 Attestation Functionality
	6.3 Data-Over-Sound
	6.4 Verifier App
	6.5 Usage Process

	7 Evaluation
	7.1 Runtime of Attestation Function
	7.2 Designing a Reliable Audio Protocol
	7.3 End-to-End Example
	7.4 Security Discussion
	7.5 User Study

	8 Related Work
	9 Conclusion and Summary
	References

